MATRICES

1). Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ and $\lambda, \mu \in \Re$. Find the values of λ and μ such that $A(\lambda A + \mu I) = I$, where I is the 2×2 identity matrix. Hence find A^{-1} .

2). Let
$$A = \begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix}$$
 be a 2×2 matrix.

Show that $A^2 - 3A + 2I = O$, where *I* is the 2×2 identity matrix and *O* is the 2×2 zero matrix. Hence, find A^{-1} .

Let
$$B = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$
 be a 2×2 matrix.

Show that BA = B.

Hence, or otherwise find a non-zero 2×2 matrix C such that BC=O.

3).Let
$$Q = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
.

Find the value of $\lambda \in \Re$ such that $Q^T Q = \lambda I$, where Q^T is the transpose of Q and I is the 2×2 identity matrix.

Hence, find the inverse of the matrix $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$.

Let *A* be a 2×2 matrix such that AP = PD, where $D = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$. Find *A*.

4).Let $a, b \in \Re$ and let $A = \begin{pmatrix} 1 & 0 \\ 0 & a \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} b & 1 \\ 1 & 1 \end{pmatrix}$. Find the values of a and b such that $A^T A = B$. where

 A^T denotes the transpose of the matrix A.

Let $C = \begin{pmatrix} 7 & 5 \\ 5 & 3 \end{pmatrix}$ and $X = \begin{pmatrix} u \\ u+1 \end{pmatrix}$, where $u \in \Re$. Also, let $CX = \lambda BX$, where $\lambda \in \Re$. Find the value of λ and the value of u.

For this value of λ , find the matrix $C - \lambda B$ and show that its inverse does not exist.

5). Three matrices A, B and C are given by

$$A = \begin{pmatrix} 0 & 2 & -3 \\ 0 & -1 & 2 \end{pmatrix}, B = \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} \text{ and } C = \begin{pmatrix} 3 & 4 \\ 2 & 3 \\ 1 & 2 \end{pmatrix}$$

1

(*i*) Show that $AC = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Also find the product *CA*.

(*ii*) Find the values of a, b, c and d such that $BC = I_2$.

(*iii*)If $(\lambda A + \mu B)C = I_2$. obtain an equation connecting λ and μ . Express the matrix $D = \begin{pmatrix} -3 & 8 & -6 \\ 2 & -5 & 4 \end{pmatrix}$ in terms of A and B, and hence find the product DC.

6).Let
$$A = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}$$
, $X = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $Y = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

Find real constants λ and μ such that $AX = \lambda X$ and $AY = \mu Y$.

Let
$$P = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$
. Find P^{-1} and AP , and show that $P^{-1}AP = D$. Where $D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$

7).Let $A = \begin{pmatrix} 7 & 8 \\ -6 & -7 \end{pmatrix}$. Find A^2 and hence obtain A^{-1} .

Determine the matrix X such that $A^{2017}X = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$.

8).Let $A = \begin{pmatrix} 3 & p \\ -2 & -3 \end{pmatrix}$, where $p \in \Re$. Find the non-zero values of p for which the matrix A has an inverse.

Find the value of the constant *p* for which $A^{-1} = A$, and hence obtain two non-zero matrices *B* and *C* of order 2 such that BC = O. Here, O is the zero matrix of order 2.

9).Let $P = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$. Find the two distinct real values of λ such that $\det(P - \lambda I) = 0$. Here *I* is the unit matrix of order 2×2 .

For each value of λ , find the column matrix $X = \begin{pmatrix} x \\ y \end{pmatrix}$ which satisfies $PX = \lambda X$.

10). Three matrices are given as $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 \\ 0 & 6 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 5 \\ -4 & k \end{pmatrix}$.

Find the value of k such that A(2B - C) = 6I. Where I is the unit matrix. Hence deduce A^{-1} .

11)Let
$$A = \begin{pmatrix} 2 & a & 3 \\ -1 & b & 2 \end{pmatrix}$$
. $B = \begin{pmatrix} 1 & -1 & a \\ 1 & b & 0 \end{pmatrix}$ and $P = \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$, where $a, b \in \Re$.

It is given that $AB^T = P$, where B^T denotes the transpose of the matrix B. Show that a=1 and b=-1, and with these values for a and b, find B^TA .

Write down P^{-1} , and using it, find the matrix Q such that $PQ = P^2 + 2I$, where I is the identity matrix of order 2.

ANANDA ILLANGAKOON

12. Matrices A and B satisfy $AB = B^{-1}$, where $B = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}$ *i*. Without finding B^{-1} find k such that $kA - 2B^{-1} + I = 0$ *ii*. Without finding A^{-1} find X such that $A^{-1}XA = B$ 13. Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ and $\lambda, \mu \in \Re$. Find the values of λ and μ such that $A(\lambda A + \mu I) = I$, where I is the 2×2 identity matrix. Hence find A^{-1} . 14. Let $A = \begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix}$ be a 2×2 matrix. Show that $A^2 - 3A + 2I = O$, where I is the 2×2 identity matrix and O is the 2×2 zero matrix. Hence, find A^{-1} . Let $B = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ be a 2 × 2 matrix. Show that BA = B. Hence, or otherwise find a non-zero 2×2 matrix C such that BC=O. 15. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 - 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix}$, where $a \in \Re$. Find the matrix **P** defined by P = AB and show that P^{-1} does not exist for any value of a. Show that if $P\left(\frac{1}{2}\right) = 5\left(\frac{2}{1}\right)$, then a = 2With this value for a, let Q = P + I, where I is the identity matrix of order 2. Write down Q^{-1} and find the matrix R such that $AA^T - \frac{1}{2}R = \left(\frac{1}{5}Q\right)^{-1}$. 16.Let $A = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$ and $C = \begin{pmatrix} b & -2 \\ -1 & b & +1 \end{pmatrix}$ be matrices such that $AB^T = C$, where $a, b \in \mathbb{R}$ Show that a = 2 and b = 1. Show also that, C^{-1} does not exist. Let $P = \frac{1}{2}(C - 2I)$. Write down P^{-1} and find the matrix Q such that 2P(Q + 3I) = P - I, where I is the identy matrix of order 2.

17.Let
$$A = \begin{pmatrix} a+1 & 0\\ 1 & 1\\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0\\ 0 & 1\\ a & 2 \end{pmatrix}$ and $C = \begin{pmatrix} a & 1\\ a & 2 \end{pmatrix}$, where $a \in \mathbb{R}$.

Show that $A^T B - I = C$; where *I* is the identity matrix of order 2.

Show also that C^{-1} exists if and only if $a \neq 0$.

Now, let a = 1. Write down C^{-1} .

Find the matrix P such that CPC = 2I + C.

ANANDA ILLANGAKOON

3

18. Let $A = \begin{pmatrix} a & -2 \\ 1 & a+2 \end{pmatrix}$. Show that A^{-1} exists for all $a \in \mathbb{R}$. The matrices $P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}$, $Q = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 7 & 4 \end{pmatrix}$ and $R = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ are such that $A = PQ^T + R$. Show that a = 1. For this value of a, write down A^{-1} and hence, find the values of x and y such that $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix}$.

19. Let
$$A = \begin{pmatrix} a & 0 & 3 \\ 0 & a & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} a & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, where $a \in \mathbb{R}$

Also, let $C = AB^T$. Find C in terms of *a*, and show that C^{-1} exists for all $a \neq 0$. Write down C^{-1} in terms of *a*, when it exists.

Show that if $C^{-1}\begin{pmatrix} 1\\ 2 \end{pmatrix} = \frac{1}{8}\begin{pmatrix} 9\\ -11 \end{pmatrix}$, then a = 2.

With this value for a, find the matrix D such that $DC - C^T C = 8I$, where I is the identity matrix of order 2.

20. The matrix
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
. Show that $A^2 - 4A + 5I = 0$ and hence find A^{-1} . using matrices, solve the equations $x - y = 4$
 $2x + 3y = 1$.

21. $A = \begin{bmatrix} -1 & 2 \\ 4 & 1 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 2 \\ \lambda & \mu \end{bmatrix}$; where $\lambda < \mu$. If *P* is a non singular matrix, find λ and μ such that $P^{-1}AP$ is a

diagonal matrix. Hence evaluate $P^{-1}A^2P$, and show that $(P^{-1}AP)^{-1} = \frac{1}{9}(P^{-1}AP)$

22. Given that $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, Show that $A^2 - 5A - 2I = O$. Hence find A^{-1} . Find *a* and *b* such that $A + aA^{-1} = bI$.

4

Find a matrix *B* such that $B \begin{bmatrix} A - 2A^{-1} \end{bmatrix} C = D$. Where $C = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

23.
$$A = \begin{bmatrix} 0 - 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$

Find the matrix C such that C = AB and write down C^{-1} . Find a matrix D such that $CDC^{-1} = 2C^2 + 3C$. Justify that $(CD)^{-1} = D^{-1}C^{-1}$. Also find the matrix P = BA.

Let
$$X = \begin{bmatrix} a \\ 2 \\ b \end{bmatrix}$$
 where , $a, b \in \Re$. Find a and b such that $PX = \begin{pmatrix} 4 \\ 3 \\ -1 \end{pmatrix}$

ANANDA ILLANGAKOON