JOINTED RODS

1. Four equal uniform rods *AB*, *BC*, *CD* and *DA* are hinged freely at their ends to form a framework in the shape of a square. The weight of the rods *AB* and *AD* are each *w* and the weight of the rods *BC* and *CD* are each 2w. A light rod is connected to the mid-points of the rods *AD* and *CD*. The framework is suspended from the joint *A*. If the system is in equilibrium in the vertical plane, find the reaction at the joints *B* and *C*. Also find the tension of the light rod.

2. Three uniform rods, AB = 2a, BC = 2a and $CD = 2\sqrt{3}a$ are smoothly joined at the ends B and C. The weights of the rods AB, BC and CD are w, λ_W and 2w respectively. The end A is smoothly hinged to a fixed point. AB is kept horizontally by a smooth fixed peg at the point E on the $\frac{a}{2}E$ $\frac{a}{2}$ B rod AB such that $AE = \frac{3a}{2}$. Jont C is placed on ГЗa the horizontal ground such that $\hat{BCD} = 90^{\circ}$. A force 'P' perpendicular to CD is applied at D such that A, B, D are 2wλw kept at equilibrium in a vertical plane at the same horizontal level. The reaction at *C* is 3*W*. Show that $\lambda = 2$. C

Further, show that the reaction at the peg E can be given by R = w. Also, show that the horizontal and vertical

components of the force exerted on AB by CB at B are $\frac{\sqrt{3}w}{4}$ and $\frac{w}{4}$ respectively.

3. *AB* and *BC* are two uniform rods of equal length and weights 2*W* and *W* respectively. The rods are smoothly jointed at *B* and hung by a point *A*. *A* and *C* points are connected by an inelastic string that brings the system to equilibrium,

the angle $A\hat{B}C = \frac{\pi}{2}$.

Show that

i.the rod *AB* is inclined an angle $\tan^{-1} \frac{1}{4}$ to the vertical,

*ii.*the tension in the string is $\frac{2w}{17}\sqrt{34}$ and

*iii.*the reaction at the joint *B* on *BC* is $\frac{w}{17}\sqrt{85}$, makes an angle $\tan^{-1} 2$ with *BC*.

4. AB and BC are two rods of lengths 2a, 4a and weights w, 2w respectively. These rods are smoothly hinged at B. One

end *A* of rod *AB* is smoothly hinged to a vertical wall as shown in the figure. A light small ring which can freely slide along a rough horizontal wire *OP* is attached to the end *C* of the rod *BC*. At the equilibrium, the rod *AB* makes an angle θ to the horizontal and $A\hat{B}C = \frac{\pi}{2}$. If $\tan \theta = \frac{3}{4}$, show that the magnitude of horizontal and vertical components of the reaction at joint *B* are $\frac{18w}{25}$ and $\frac{w}{25}$ respectively. If the coefficient of friction between the ring and the wire is μ , show that $\mu \ge \frac{18}{49}$.

ANANDA ILLANGAKOON

5. Four uniform smooth rods each of length 2*b* and weight *w* are smoothly jointed at *A*, *B*, *C* and *D* to form a rhombus *ABCD*. The system is kept in equilibrium in a vertical plane so that the rods *AB* and *AD* rest upon two smooth pegs at the same horizontal level. The distance between the pegs is 2*a*. The rods *AB* and *AD* each makes an angle θ to the vertical. A weight of *w* hang at the lowest point *C*. Show that

i. The reaction on the peg is $\frac{5w}{2}\cos ec\theta$

ii., if the reaction at *B* makes an angle α to the vertical, $3 \tan \alpha = 2 \tan \theta$ and *iii.* $5a = 12b \sin^3 \theta$

6. A rhombus *ABCD* is formed of four uniform rods *AB*, *BC*, *CD* and *AD* each of length 2*a* and weight *w*, smoothly jointed at their ends. The rhombus is suspended from *A* and a light inextensible string is connected to the points *L*

and *M* on the rods *AB* and *BC* respectively. Here $AL = CM = \frac{a}{2}$.

The string *LM* and *AC* are vertical and the system is in equilibrium in a vertical plane with the vertex *A* is above *C*. Given that $\hat{BAD} = \hat{BCD} = 60^{\circ}$.

i. Find the reaction at C and show that its inclination to the horizontal is $\tan^{-1}(2\sqrt{3})$.

ii.Show that the tension of the string *LM* is $\frac{8w}{3}$.

iii.Find the magnitude and the direction of the reaction at *B*.

7. Three uniform rods of *AB*, *BC* and *CD* each of length 2*a* and weight *W* are jointed freely at *B* and *C*. The rod *BC* is horizontal and the end *A* and *D* are kept on a smooth horizontal plane. Two light, inextensible strings of same length are connected to the midpoints of rods *AB* and *CD* and the other ends are connected to the midpoint of rod *BC*. The strings are kept taut and *ABCD* is in equilibrium in a vertical plane. $A\hat{B}C = 120^{\circ}$, Show that the tensions in the strings is 2*W*. Find the magnitude of the reaction at the joint *B* and show that the reaction makes an angle

$$\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 with the horizontal.

8. Four uniform smooth rods *AB*, *BC*, *CD* and *DA* each of length 2*a* and weight *w* are smoothly jointed at *A*, *B*, *C* and *D* so as to form a rhombus. The rods *AB* and *AD* are placed on two smooth pegs on the same horizontal level at a distance 2*l* apart such that the joint *A* is above *C*. A weight 2*w* is hung at *C*. The rhombus is kept in equilibrum symmetrically in a vertical plane with $B\hat{A}D = 120^{\circ}$

i.Find the reaction on a rod by a peg.

ii.Show that the reaction at the joint *B* is $\frac{\sqrt{43}w}{2}$ and find the inclination of the reaction to the horizontal. *iii*.Also show that $l = \sqrt{3}a$.

10. A rhombus *ABCD* is formed by joining freely, four uniform rods *AB*, *BC*, *CD* and *DA* each of length 2a and weight *W*, at the points *A*, *B*, *C* and *D*. The system rests on the surface of a smooth cylinder of radius *r* which is fixed with its axis horizontal. The rods *AB* and *AD* rest in the vertical plane perpendicular to the axis of the cylinder. If the

rods *AB* and *AD* make an angle $\theta = \tan^{-1}\left(\frac{1}{2}\right)$ with vertical.

i.Find reactions on *AB*, *AD* which exerted by the cylinder.

ii.Find magnitude and directions of reactions at joint *A* and *C*.

iii. Deduce the horizontal and vertical components of reaction either at *B* or *D*.

iv. Show that $r = \frac{a}{5}$.

11. Two uniform rods *OA* and *AB*, each of length 2*a* and weights *aw* and *bw* respectively, are freely jointed at *A* and suspended from *O*. The system is kept in equilibrium by a horizontal force *P* at *B*. If the rods *OA* and *AB* make the

angles α and β to the vertical respectively, show that $\frac{\tan \alpha}{\tan \beta} = \frac{b}{a+2b}$.

12. Two uniform rods *AB* and *BC*, each of length 2*a* are jointed smoothly at *B*. The rod *AB* is of weight *W* and the rod *BC* is of weight 2*W*. The end *A* is hinged smoothly to a fixed point. This system is kept in equilibrium in a vertical plane with rods *AB* and *BC* making angles α and β , respectively, with the downward vertical by a force $\frac{W}{2}$

applied at *C* in the direction perpendicular to *BC* shown in the figure. Show that $\beta = \frac{\pi}{6}$ and find the horizontal and the vertical components of the reaction at the joint *B* on the

rod *BC* exerted from the rod *AB*. Also, show that $\tan \alpha = \frac{\sqrt{3}}{9}$.

13. Three uniform rods *AB*, *BC* and *CD* each of length 2*a* are smoothly joined at the ends *B* and *C*. The weights of the rods *AB*, *BC* and *CD* are *W*, λW and $2\lambda W$, respectively. The end *A* is smoothly hinged to a fixed point. The rods are kept in equilibrium in a vertical plane by a light inextensible string attached to the joint *C* and to a fixed point vertically

above *C* and by a horizontal force *P* applied to the end *D* such that *A* and *C* are at the same horizontal level and each of the rods making an angle α with the vertical, as shown in the figure. Show that $\lambda = \frac{1}{3}$. Show also that the horizontal and vertical components of the force exerted on *AB* by *CB* at *B* are $\frac{W}{3} \tan \alpha$ and $\frac{W}{6}$, respectively.

14. Four uniform rods each of weight *W* are hinged smoothly to form a rhombus *ABCD*. The system is suspended

freely from *D*. The vertex *A* and the midpoint of *CD* are joined by a light rod such that $A\hat{B}C = \frac{\pi}{3}$. Find the reaction of joint *C* and the stress of the light rod.

15. Two rods *AB*, *BC* of weights *W*, 2*W* and each of length 2*a* are smoothly jointed at *B*. The end *A* of rod *AB* is smoothly hinged at a point. Angles made by *AB*, *BC* with vertical are α , β respectively. The system is kept in equilibrium by a force $\sqrt{3}_W$ at an angle 30 with *CB* as shown in the figure. Find α , β and the reaction at joint *B*.

16. Three uniform rods each of weight *w* are smoothly jointed at *P*, *Q*, *R* so as to form an isosceles triangle.

Here PQ = 8a, $Q\hat{P}R = \frac{\pi}{6}$, $P\hat{Q}R = \frac{2\pi}{3}$. The joint *P* is smoothly hinged to a wall and the rod *PQ* is kept in a horizontal position by means a smooth peg in the same level of *P* at a distance 6a from *P*. *i*. Find the reaction by the peg.

ii. Show that the reaction at the point Q is $\frac{\sqrt{19}w}{2}$ and find the reaction at R.

iii.Now instead of the peg, by applying a force F at R perpendicular to PR, the system is kept in equilibrium as before.

Find the value of *F*. Show that the reaction at the joint *Q* makes an angle $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ to the horizontal.

17. Four uniform rods each of weight *W* are smoothly jointed at *A*, *B*, *C*, *D* and suspended from *A*. The framework is kept in equilibrium in a vertical plane by joining the mid-points of *AB* and *AD* by a light rod and suspending loads each of weight *W* at *B* and *D*. If $B\hat{A}D = 2\alpha$, $B\hat{C}D = 2\theta$ and AB = AD = 2a, find the reaction at *C* and show that the thrust in the light rod each is $w[5 \tan \alpha + \tan \theta]$.

18. Two uniform rods *AB*, *AD* each of length 4*a* and weight 2*w* and another two uniform rods *BC*, *CD* each of length 3*a* and weight *W* are smoothly jointed at *A*, *B*, *C* and *D* and framework is suspended from *A*. such that $A\hat{B}C = A\hat{D}C = 90^{\circ}$, by joining mid-points *P* and *Q* of *BC* and *CD* by two light rods *AP* and *AQ*. If the framework is in equilibrium in a vertical plane find the reaction at the joint *C*. Also find the stresses of the rods *AP* and *AQ*.

2w

19.Four rods *AB*, *BC*, *CD*, *DA* each of length 2*a* and weight *w* are smoothly jointed at ends *A*, *B*, *C* and *D*. The system is at equilibrium in a vertical plane by a light rod of length 2*a*, joining the points *B* and *C* with the midpoints of *BC* and *CD* touching two pegs in the same horizontal level as shown in the figure. Find the reactions of the pegs on rods *BC* and *CD* and also find the reactions at joints *A* and *C*. Also, show that the thrust of the light rod is $\frac{2w}{\sqrt{3}}$.

20. *ABCDEF* is a framework formed with six uniform rods each of weight *w* and length *a*, smoothly jointing at their ends. The framework is suspended from *A*, and the regular hexagonal shape is maintained by a light rod joining the points *L* and *M* on *BC* and *FE* respectively, such that BL = FM = b. A uniform circular lamina of weight *w* and radius $\frac{a}{\sqrt{3}}$ is placed symmetrically on the rods *DC* and *DE* such that its plane is on the same vertical plane of the framework *ABCDEF*.

i. Show that the reaction of *D* is $\frac{17w}{6\sqrt{3}}$ horizontally.

ii. Show that the thrust of the light rod is $\frac{34w}{3\sqrt{3}}$.

iii. Show that $b = \frac{7a}{34}$.

21. Three rods *AB*, *BC*, *CD* of weights $\frac{w}{2}$, *w*, $\frac{w}{2}$ and length *a*, 2*a*, *a* are smoothly jointed at *B* and *C*. The rods are in equilibrium symmetrically on a fixed smooth sphere of radius 2*a*, with *A*, *D* and mid - point of *BC* in contact with the sphere. Show that the reaction between sphere and *BC* is $\frac{91w}{50}$. Find the horizontal and vertical components of reaction

at *B* and *C* and show that the distance to the point where these reactions meet from *BC* is $\frac{41a}{12}$.

22.Four equal uniform rods *PQ*, *QR*, *RS* and *SP* each of weight *w*, are smoothly jointed to form a rhombus *PQRS*. It is suspended from the point *P* and kept in equilibrium in a vertical plane with the angle *QRS* equal to $2\tan^{-1} 2$ by a light inextensible string connected to the midpoints of the rods *PS* and *RS*.

i. Find the reactions at the joints *R* and *S*. *ii*. Show that the tension of the string is 4w.

- 23. A rhombus is formed by using four equal uniform rods *AB*, *BC*, *CD*, *DA* each of weight w and length 2*a*. The rhombus is suspended from *A* and rhombic form is maintained by using a string *AC*, and it is in equilibrium so that $B\hat{A}D = 60^{\circ}$.
 - (i) Find the magnitade and direction of the reaction at the joint B.

5

A

C

- (*ii*) Show that the depth from A to the point of intersection of the lines of the reactions at the joints A and B on the rod AB is $\sqrt{3}a$.
- (iii) Show that the tension in the string AC is 2w.
- 24. A frame *ABCDE* in the shape of a regular pentagon has been made with five identical uniform rods, each of length 2a and weight *w*, freely jointed at their ends. The frame has been kept in a vertical plane with the side *CD* of the pentagon in contact with a horizontal plane. The shape of the pentagon is maintained by a string joining the mid points of the rods *BC* and *DE*. Show that the reaction at the joint *A* is $\frac{w}{2} \cot \frac{\pi}{5}$. Find also the tension in the string.
- 25. The weights of three uniform rods *AB*, *BC* and *CD*, each of length 4*a* are λW , *W* and λW respectively. The rods are smoothly jointed at *B* and *C*. The ends *A* and *D* are freely hinged to two fixed points in the same horizontal level, a distance 8*a* apart from each other, such that the system is in equilibrium in a vertical plane with *BC* lying below *AD*.

i. Find the horizontal and vertical components of the reaction at *A*.

ii.Find the horizontal and vertical components of the reaction on the rod *BC* at the point *B*.

iii the lines of action of the reactions on the rod *BC* at *B* and *C* meet at a distance $\frac{\sqrt{3}}{2}$ a vertically below *BC*, find the value of λ .

26. Four equal rods each of weight *w* and length 2a are smoothly jointed at their ends to form a rhombus *ABCD*. The rods *BC* and *CD* are placed on two smooth pegs at a distance 2c apart on the same horizontal level. The mid points of *AB* and *AD* are joined to the vertex C by means of two equal light rods. If $B\hat{A}D = \frac{2\pi}{3}$, show that the stress of light rods is $\frac{W}{3a}(3\sqrt{3}a - 4c)$. Find the reaction of the hinge *A*.

27.*AB* is a fine uniform rod of mass *M* with its end *A* is smoothly hinged to the ground. One end of a light inextensible string is tied to a point *E* in a wall. The other end passes over the rough end B of the rod and tied to a point *C* on the ground such that AB=AC. A particle of mass *m* is suspended from *D* such that *DE* is horizontal. $A\hat{B}D = 90^{\circ}$ and $A\hat{B}C = \theta$. The parts *BC*, *AB*, *BD*, *DE* are in the same vertical plane. $(0 < \theta < 45^{\circ})$

- (i). Calculate the tensions in DE, DB parts of the string.
- (ii). Show that the tension in the string BC is $\frac{2m + M \cos^2 2\theta}{2 \sin \theta \cos^2 \theta} \cdot g$.
- (iii). If $\theta = 30^{\circ}$, find the magnitude and direction of the reaction at *A*.