BINOMIAL THEOREM

- 1. Expand the following binomials.
- 1. $(x-3)^5$ 2. $(3x+2y)^4$ 3. $(2x-y)^5$ 4. $(1-3a^2)^6$ 5. $(x^2+x)^5$ 6. $(1-xy)^7$ 7. $\left(2-\frac{3x^2}{2}\right)^4$ 8. $\left(3a-\frac{2}{3}\right)^6$ 9. $\left(1+\frac{x}{2}\right)^7$ 10. $\left(\frac{2x}{3}-\frac{3}{2x}\right)^6$ 11. $(x^2+2y)^5$ 12. $\left(2x-\frac{3}{y}\right)^5$ 2.. (1). Find the value of $\left(x+\sqrt{2}\right)^4 + \left(x-\sqrt{2}\right)^4$
 - (2). Find the value of $(\sqrt{2} + 1)^6 (\sqrt{2} 1)^6$
 - (3). Find the value of $(2 \sqrt{1-x})^6 + (2 + \sqrt{1-x})^6$

(4). Find the value of
$$(\sqrt{x^2 - a^2} + x)^5 - (\sqrt{x^2 - a^2} - x)^5$$

- 3. Using the binomial theorem, expand $[(x + y)^5 + (x y)^5]$ and hence find the value $[(\sqrt{2} + 1)^5 + (\sqrt{2} - 1)^5]$.
- 4 By using the binomial expansion, expand
- *i*) $(1 + x + x^2)^3$ *ii*) $(1 x + x^2)^4$ 5)Find the 10th term of $\left(2x^2 + \frac{1}{x}\right)^{12}$

6) Find the 6th term in the expansion of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$.

7) Find the 5th term from the end in the expansion of $\left(\frac{x^3}{2} - \frac{2}{x^2}\right)^9$.

8)Find the middle term in the expansion of $\left(3x - \frac{x^3}{6}\right)^7$

9)Find the term independent of x in the expansion of

i)
$$\left(x^{2} + \frac{1}{x}\right)^{9}$$
 ii) $\left(2x - \frac{1}{x}\right)^{10}$

10) *i*. Find the 12th term of $(2x-1)^{13}$

ii. Find the 28th term of $(5x+8y)^{30}$

iii. Find the 4th term of
$$\left(\frac{a}{3}+9b\right)^{10}$$

iv. Find the 5th term of
$$\left(2a - \frac{b}{3}\right)^{\circ}$$

v. Find the 7th term of
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$

11)Prove that there is no term x^6 involving in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{11}$

12)Find the coefficient of x^5 in the expansion of the product $(1+2x)^5(1-x)^7$.

- 13)Using binomial theorem, find the values of i $(10.1)^5$ ii $(0.99)^{15}$
- 14)Show that the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is the sum of the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$.

- 15) If the coefficients of a^{r-1} , a^r , a^{r+1} in the binomial expansion $(1+a)^n$ are in arithmetic progression, prove that $n^2 - n(4r+1) + 4r^2 - 2 = 0$.
- 16) If *P* be the sum of odd terms and *Q* that of even terms in the expansion of $(x + a)^n$, prove that (i) $(P^2 Q^2) = (x^2 a^2)^n$
- 17) If the coefficients of 2nd,3rd and 4th terms in the expansion of $(1 + x)^{2n}$ are in arithmetic progression, show that $2n^2 - 9n + 7 = 0$.
- 18) The first three terms in the binomial expansion of $(x + y)^n$ are 1, 56 and 1372 respectively. Find the values of x and y.
- 19)The coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1:7:42. Find *n*.
- 20)Using binomial theorem, prove that when $6^n 5n$ is divided by 25 always leaves a remainder 1, where *n* is a positive integer.

21) (*i*). Find the middle term of $\left(\frac{a}{x} + \frac{x}{a}\right)^{10}$

(*ii*).Find the middle term of $\left(1 - \frac{x^2}{2}\right)^{14}$

(*iii*).Find the coefficient of x^{18} in $\left(x^2 + \frac{3a}{x}\right)^{15}$

(*iv*). Find the coefficient of x^{18} in $(ax^4 - bx)^9$

(v). Find the coefficient of x^{32} and x^{-17} in $\left(x^4 - \frac{1}{x^3}\right)^{15}$

(vi). Find the two middle terms of $\left(3a - \frac{a^3}{6}\right)^9$

(*vii*). Find the term independent of x in
$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$

(*viii*). Find the term independent of x in $\left(x - \frac{1}{x^2}\right)^{3n}$

22.(*i*).Find the greatest term in the expansion of $(1+4x)^8$ when x=2

(*ii*).Find the greatest term in the expansion of $(x + y)^{30}$ when x = 11, y = 4.

(*iii*).Find the greatest term in the expansion of $(2x+3y)^{28}$. When x=9, y=4.

(*iv*). Find the greatest term in the expansion of $(2a+b)^{14}$. When a=4, b=5.

(v). Find the greatest term in the expansion of $(3+2x)^{15}$. When $x = \frac{5}{2}$.

(*vi*).Find the greatest term in the expansion of $(1+x)^n$. When $x = \frac{2}{3}$, n=6.

(*vii*).Find the greatest term in the expansion of $(a + x)^n$, When

$$a = \frac{1}{2}, x = \frac{1}{3}, n = 9$$

23. Find the mumericaly greatest coefficient in the following expansions.

(*i*). $(1+x)^{15}$ (*ii*). $(1+2x)^{35}$ (*iii*). $(2x+3y)^{11}$ (*iv*). $(3-2x)^{24}$ (*v*). $(2+3x)^{16}$ (*vi*). $(4+3x)^{8}$ (*vii*). $(3x+2y)^{20}$

24.It is given that the greatest coefficient of the expansion

 $\left(x^{\frac{1}{2}} + x^{-\frac{3}{4}}\right)^n$ is in 9th term. Find *n* and coefficient of x^4 .

25. If x > 0, if the middle term of the expasion $(2+x)^{14}$ is the

greatest, show that $\frac{7}{4} < x < \frac{16}{7}$.

26. If the greatest term of the expansion $\left(2 + \frac{3}{8}x\right)^{10}$ is T₄, show that

$$2 < x < \frac{64}{21}.$$

27. Prove the following.

(i). ${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$ (ii). $r \cdot {}^{n}C_{r} = n \cdot {}^{n-1}C_{r-1}$ (iii). $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$ (iv). ${}^{n}C_{r} = {}^{n}C_{n-r}$ (v). $\frac{{}^{n}C_{r}}{r+1} = \frac{{}^{n+1}C_{r+1}}{n+1}$ 28. Prove that $\frac{{}^{n}C_{r}}{r+1} = \frac{{}^{n+1}C_{r+1}}{n+1}$. Hence, by repeated application of this result show that $\frac{{}^{n}C_{r}}{(r+1)(r+2)(r+3)} = \frac{{}^{n+3}C_{r+3}}{(n+1)(n+2)(n+3)}$. 29. (a). If $(1+x)^{n} = \sum_{r=0}^{n} {}^{n}C_{r}x^{r}$ show that ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$

(b). Show that $r_{\cdot}^{n}C_{r} = n_{\cdot}^{n-1}C_{r-1}$. Hence show that

$${}^{n}C_{1} + 2.{}^{n}C_{2} + 3.{}^{n}C_{3} + \dots + n.{}^{n}C_{n} = n.2^{n-1}$$

30. Write down the r^{th} term T_r of the series

 $2C_1 + 3C_2 + 4C_3 + \dots + (n+1)C_n$ where $C_r = {}^nC_r$. Show that $T_r = r \cdot {}^nC_r + {}^nC_r \cdot \dots \cdot$ Hence show that

$$2C_1 + 3C_2 + 4C_3 + \dots + (n+1)C_n = 2^{n-1}(n+2) - 1$$
. Deduce that
 $C_0 + 2C_1 + 3C_2 + 4C_3 + \dots + (n+1)C_n = 2^{n-1}(n+2)$.

31. Using the expansion of $(1-x)^n$ show that $\sum_{r=0}^n (-1)^{r-n} C_r = 0$.

Consider the series $3 {}^{n}C_{0} - 8 {}^{n}C_{1} + 13 {}^{n}C_{2} - 18 {}^{n}C_{3} + \dots$ up to (n+1) term. Show that the general term T_{r} can be written as $T_{r} = (-1)^{r}(3+5r) {}^{n}C_{r}$ for $r = 0,1,2,3,\dots,n$. Hence show that the sum of the above series is 0.

32. If
$$x + y = 1$$
 prove that $\sum_{r=0}^{n} r {}^{n}C_{r}x^{r}.y^{n-r} = nx$

33. Let $S = 1.2C_1 + 2.3C_2 + 3.4C_3 + \dots + n(n+1)C_n$. Where $C_r = {}^n C_r$.

Show that $S = 2n + \sum_{r=2}^{n} r(r+1) C_r$. Show further that

$$\sum_{r=2}^{n} r(r+1)C_r = n(n-1)\sum_{r=2}^{n} {}^{n-2}C_{r-2} + 2n\sum_{r=2}^{n} {}^{n-1}C_{r-1}$$
. Hence deduce

that $S = n(n+3)2^{n-2}$.

34. Prove that $\frac{{}^{n}C_{r}}{r+1} = \frac{{}^{n+1}C_{r+1}}{n+1}$. Hence, if $(1+x)^{n} = \sum_{r=0}^{n} {}^{n}C_{r}x^{r}$ show

that
$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$$
 Where $C_r = {}^n C_r$.

35. Write down the general term of the series

$$\frac{{}^{n}C_{1}}{2} - \frac{2{}^{n}C_{2}}{3} + \frac{3{}^{n}C_{3}}{4} + \dots + (-1)^{n+1} \frac{n{}^{n}C_{n}}{n+1}.$$
Show that the sum of n terms of the series is $\frac{1}{n+1}$.
36. (i). Find the sum of ${}^{10}C_{1} + {}^{10}C_{3} + {}^{10}C_{7} + {}^{10}C_{9}$.
(ii). Find the sum of n terms of the series
 $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots$.
(iii). Show that $\sum_{k=0}^{10} {}^{20}C_{k} = 2^{19} + \frac{1}{2} {}^{20}C_{10}$
37. (i). Find the sum of all coefficients in the binomial expansion of $(x^{2} + x - 3)^{319}$.
(ii). If the sum of the coefficients in the expansion of $(a^{2}x^{2} - 2ax + 1)^{51}$ vanishes, then find the value of *a*.
38. (i). If $(1 + x - 2x^{2})^{20} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots + a_{40}x^{40}$
then show that $a_{1} + a_{3} + a_{5} + \dots + a_{39} = -2^{19}$.
(ii). If the middle term in the expansion of $(x^{2} + \frac{1}{x})^{n}$ is $924x^{6}$
then show that $n = 12$.
(iii). If the coefficient of the middle term in the expansion of $(1 + x)^{2n+2}$ is α and the coefficients of middle terms in the expansion of $(1 + x)^{2n+1}$ are β and γ show that $\beta + \gamma = \alpha$

- 39.(*i*).If the coefficients of three consective terms in the expansion of $(1+x)^n$ are 165, 330 and 462 respectively, then find the value of *n*.
 - (*ii*). If a_1, a_2, a_3, a_4 are the coefficients of any four consecutive terms in the

expansion of $(1+x)^n$ then prove that $\frac{a_1}{a_1+a_2} + \frac{a_3}{a_3+a_4} = \frac{2a_2}{a_2+a_3}$.

(*iii*).Show that
$$\sum_{r=1}^{n} \frac{r \cdot C_{r}}{C_{r-1}} = \frac{n(n+1)}{2}$$

(*iv*).Find the sum
$$\sum_{r=1}^{n} r^2 \frac{{}^{n}C_r}{{}^{n}C_{r-1}}.$$

40. Show that,

$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_{n-1} x^{n-1} + C_n x^n$$

Where $C_r = {}^n C_r$.

(a). Prove that $C_0 + C_1 + C_2 + C_3 + \dots + C_n = 2^n$

(b). When n is odd integer. Prove that $C_0 + C_2 + C_4 + \dots + C_{n-1} = C_1 + C_3 + C_5 + \dots + C_n$ (c). When n is even integer

$$C_0 + C_2 + C_4 + \dots + C_n = C_1 + C_3 + C_5 + \dots + C_{n-1}$$

Hence deduce that,

$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

41. Write down the expansions of $(1+x)^n$ and $(x+1)^n$ in usual notaion.

By multiplying above expansions and considering x^n coefficients on both sides, show that,

$$C_{0}^{2} + C_{1}^{2} + C_{2}^{2} + \dots + C_{n}^{2} = \frac{(2n)!}{(n!)^{2}}$$

- 42.Let $(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_r x^r + \dots + C_n x^n$ where ${}^n C_r = C_r$
 - (*a*).By differentiating both sides with respect to x and substituting x=1, show that, $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$
- (b).By integrating both sides with respect to x and substituting x=1, show that,

$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{(n+1)}$$

43. State the expansion of $(1+x)^n$ for positive integral *n*. Show that

$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$
 and
 $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$

Hence show that

$$C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n = (n+2) \cdot 2^{n-1}$$
.

44. Write down in usual notation the expansions of $(1-x)^n$ and $(1-x)^{n-1}$ show that

$${}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n^{n}}C_{n} = 0$$
 and
 ${}^{n-1}C_{0} - {}^{n-1}C_{1} + {}^{n-1}C_{2} - {}^{n-1}C_{3} + \dots + (-1)^{n-1}C_{n-1} = 0$

Hence show that,

$$a^{n}C_{0} - {}^{n}C_{1}(a-1) + {}^{n}C_{2}(a-2) - \dots + (-1)^{n^{n}}C_{n}(a-n) = 0$$

45. Let
$$(1 - x + x^2)^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{2n} x^{2n}$$
 Show
that $a_2 = \frac{n(n+1)}{2}$ and $a_3 = -\frac{n}{6}(n-1)(n+4)$.

9

Show also that

- (*i*). $a_1 + a_2 + a_3 + \dots + a_{2n} = 0$.
- (*ii*). $a_0 a_1 + a_2 a_3 + \dots + a_{2n} = 3^n$.

46.(*i*).If *n* is a positive integer and when ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$, prove that

$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}.$$

(ii).When n is a positive integer prove by mathematical induction that

$$(1+x)^{n} = {}^{n} C_{0} + {}^{n} C_{1}x + {}^{n} C_{1}x^{2} + \dots + {}^{n} C_{n}x^{n}.$$

(*iii*).By using $(1+x)^{2n} = (1+x)^n (1+x)^n$ and using binomial expansion show that $\binom{n}{C_0}^2 + \binom{n}{C_1}^2 + \dots + \binom{n}{C_n}^2 + \dots + \binom{n}{C_n}^2 = {}^{2n}{C_n}.$

47. Given that $(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$ Prove that,

- (i). $a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$
- (ii). $a_0 a_1 + a_2 a_3 + \dots + a_{2n} = 1$
- (iii). $a_1 + 2a_2 + 3a_3 + \dots + 2na_{2n} = n \cdot 3^n$

48. (a). The coefficients of the expansion $(1+x)^n$ are $C_0, C_1, C_2, \ldots, C_n$ Find

(*i*).
$$C_1C_n + C_2C_{n-1} + C_3C_{n-2} + \dots + C_nC_1$$

(*ii*). ${}^4C_0{}^4C_4 - {}^4C_1{}^4C_3 + {}^4C_2{}^4C_2 - {}^4C_3{}^4C_1 + {}^4C_4{}^4C_0$

(b). When n is a positive integer. If

$$(1+x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$
 and

$$(1+x)^{n+1} = b_0 + b_1 x + b_2 x^2 + \dots + b_{n+1} x^{n+1}$$

Prove that $b_r = a_r + a_{r-1}$

49.If *n* is a positive integer prove that

$$(1+x)^{n} = 1 + C_{1}x + C_{2}x^{2} + \dots + C_{r}x^{r} + \dots + C_{n}x^{n} \text{ where}$$

$$^{n}C_{r} = C_{r} = \frac{n!}{r!(n-r)!}$$
If $(3-2x)^{20} = a_{0} - a_{1}x + a_{2}x^{2} - \dots + a_{20}x^{20}$
(i). Show that $a_{0} + a_{2} + a_{4} + \dots + a_{20} = \frac{1}{2}(5^{20} + 1)$

(ii). Show that the greatest coefficient is a_8 .

50. (i).If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$

where $C_r = {}^n C_r = \frac{n!}{r!(n-r)!}$.
(ii).Prove that $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)}{(n!)^2}$

(*iii*). Find the term independent of x in the expansion

$$\left(x^2-\frac{1}{x}\right)^6\left(x+\frac{1}{x}\right)^4.$$

51. (*i*).Find the greatest term of the expansion $\left(\frac{1}{5} + \frac{5x}{2}\right)^{11}$ when x=2.

(*ii*). $a_0, a_1, a_2, \dots, a_{2n}$ are constants and *n* is a positive integer.

If
$$(1-x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$$

show that $a_2 = \frac{n}{2}(n+1)$ and $a_3 = -\frac{n}{6}(n-1)(n+4)$ Also prove that (a). $a_1 + a_2 + \dots + a_{2n} = 0$.

(b).
$$a_0 - a_1 + a_2 - a_3 \dots + a_{2n} = 3^n$$
.

52. Let $(1+kx)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{10}x^{10}$, $x \in \Re$ where $a_2 = \frac{20}{9}$ and k is a positive constant. Find the value of k. Show that $a_1 + a_3 + a_5 + a_9 = \frac{11^{10} - 7^{10}}{2 \Omega^{10}}$ Deduce the value of

 $a_0 + a_2 + a_4 + a_6 + a_8 + a_{10}$.

53. Write down in the usual notation, the binomial expansion of $(a+b)^n$, where *a* and *b* are real and *n* is a positive integer .Using appropriate values for *a*, *b* and *n* write down the corresponding formulae for $(1-x)^4$, $(x+1)^4$ and $(1-x^2)^4$. Hence show in the usual notation that

(*i*).
$$({}^{4}C_{0})^{2} - ({}^{4}C_{1})^{2} + ({}^{4}C_{2})^{2} - ({}^{4}C_{3})^{2} + ({}^{4}C_{4})^{2} = 6$$

(*ii*). ${}^{4}C_{0}{}^{4}C_{1} - {}^{4}C_{1}{}^{4}C_{2} + {}^{4}C_{2}{}^{4}C_{3} - {}^{4}C_{3}{}^{4}C_{4} = 0$

54. For all $x \in IR$ let in the usual notation

 $(1+x)^n = {}^n C_0 + {}^n C_1 x + \dots + {}^n C_r x^r + \dots + {}^n C_n x^n$ where *n* is a positive integer. By considering the product of $(1+x)^{n-1}$ and (1+x) show that ${}^n C_r = {}^{n-1} C_{r-1} + {}^{n-1} C_r$ for $r = 1, 2, \dots, n-1$.

Deduce that ${}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1)^{n-1}C_{n-1} + (-1)^{n}C_{n} = 0$

verify the above result by an alternative method. If *n* is an even integer, deduce that ${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots + {}^{n}C_{n} = 2^{n-1}$.

55.By using the principle of mathematical induction, prove that

$$(x+y)^n = \sum_{r=0}^n {}^n C_r x^{n-r} y^r$$
 where *n* is a positive integer, and ${}^n C_r = \frac{n!}{(n-r)!r!}$

Deduce that $(p+q)^n - p^n - q^n$ is divisible by pq, where p, q and n are positive integers.

- 56.(*a*). Three consecutive coefficients in the expansion of $(1+x)^n$ where *n* is a positive integer are 45, 120 and 210. Find the value of *n*.
 - (b). Is it possible for three consective coefficients in the expansion of $(1+x)^n$, where *n* is a positive integer to be in geometric progression? Justify your answer.
- 57.State the binomial theorem for a positive integral index.

Let *a*, *b* and *d* be integers such that a=b+d. Show that $a^n - b^{n-1}(b+nd)$ is divisible by d^2 for positive integral *n*. If U is the *n*th term of an arithmetic progression whose first term is *a* and the common difference is *d*, prove that $a^n - (a-d)^{n-1}U$ is divisible by d^2 . Deduce that $7^{60} - 3^{64}$ is divisible by 16.

58.State the binomial therom for a positive integral index. By choosing appropriate values for x and y in $3(x + y)^n$, show that 3^{2n+1} can be expressed as $7k + 3(2^n)$ where k and n are positive integers. Hence, show that $3^{2n+1} + 2^{n+2}$ is divisible by 7 for positive integral n.

- 59.(a). If n > 1, then show that $(1 + x)^n nx 1$ is divisible by x^2 .
 - (b).By substituting suitable values for x and y in the expansion $5(2x + y)^n$, show that 5^{2n+1} can be expressed in the form of $5.3^n + 11k$. Where n and k are integers. Hence, show that for all positive integers of n, $3^{n+3} - 5^{2n+1}$ is divisible by 11.
- 60.(i).Write down the expansion of $(a + b)^n$. Where *n* is a positive integer.

Expand $(x + 2)^5$ and hence express $(x + 2)^5 - (x - 2)^5$ as a polynomial in *x*. Find the exact value of $2.1^{5}+1.9^{5}$

(*ii*).By substituting a suitable value for x in $\left(1+\frac{x}{5}\right)^6$ find to 4 significant figures correctly the value of $(1.01)^{6}$.

- 61.(i).Show that 6ⁿ -1 is divisible by 5, for positive integral n.
 (ii).Show that for positive integral n, 10ⁿ 9n -1 is divisible by 9.
 (iii).By substituting x=2 and x=4 in (1+x)ⁿ Show that the expressions 3ⁿ 2n 1 and 5ⁿ 4n 1 are divisible by 4. Hence deduce that 5ⁿ + 3ⁿ 6n 2 is divisible by 4.
- 62.Let $l = (4\sqrt{6}-9)^{2n+1}$ and $m = (4\sqrt{6}+9)^{2n+1}$. By expanding ,show that m-l is an integer *I*. Also show that 0 < l < 1. Deduce that the integral part and fractional part of *m* are *I* and *l*. Prove that $lm = 15^{2n+1}$.

63.Let $n \in Z^+$. The coefficient of x^{n-2} in the expansion of $\left(2 + \frac{3}{x}\right) (1+x)^n$ is 120. Find the value of n.

64.Let $x \in \Re$ and in the usual notation, $(1+x)^n = \sum_{r=0}^n {}^n C_r x^r$, where $n \in \mathbb{Z}^+$.

Show that $\sum_{r=0}^{n} {}^{n}C_{r} = 2^{n}$. By writing ${}^{n}C_{r}$ using factorials, show that $\frac{{}^{n}C_{r}}{(r+1)} = \frac{{}^{n+1}C_{r+1}}{(n+1)}$ and deduce that $\frac{{}^{n}C_{r}}{(r+1)(r+2)} = \frac{{}^{n+2}C_{r+2}}{(n+1)(n+2)}$ for positive integral r with $0 \le r \le n$. Hence, show that $\sum_{r=0}^{n} {}^{n}C_{r}$ 1 (2ⁿ⁺²)

$$\sum_{r=0}^{n} \frac{C_r}{(r+1)(r+2)} = \frac{1}{(n+1)(n+2)} (2^{n+2} - n - 3)$$

65.Let
$$f(x) = \left\{ x + \sqrt{x^2 - 1} \right\}^6 + \left\{ x - \sqrt{x^2 - 1} \right\}^6$$

Using binomial expansion, express f(x) as a polynomial in x.

Hence, find the value of
$$\frac{1}{\left(2-\sqrt{3}\right)^6} + \frac{1}{\left(2+\sqrt{3}\right)^6}$$
.

- 66. If the coefficient of x and the coefficient of x^2 in the binomial expansion of $(1 + px)^{12}$, where p is a non-zero constant, are q and 11q respectively, find the values of p and q.
- 67. Using the binomial expansion for a positive integral index, show that $(1+\sqrt{3})^6 + (1-\sqrt{3})^6 = 416$. Hence, find the integer part of $(1+\sqrt{3})^6$.

68.Let $n \in Z^+$ and $n \ge 5$. The coefficient of x^{n-10} in the binomial expansion of $\left(3x + \frac{2}{x}\right)^n$ is less than 100. Find the value of *n*. 69.Let $a \in IR$. The term independent of x in the binomial expansion of

$$\left(x+\frac{a}{x^3}\right)^{2n}$$
 is $\frac{969}{2}$. Find the value of a.

70.Let $n \in Z^+$. State, in the usual notation, the binomial expansion for

 $(1+x)^n$. Show, in the usual notation, that

$$\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1}$$
 for $r = 0, 1, 2, \dots, n-1$

The coefficients of x^r , x^{r+1} and x^{r+2} taken in that order, in the binomial expansion of $(1+x)^n$ are in the ratios 1 : 2 : 3. In this case, show that n=14 and r=4.

71. Write down the binomial expansion of $(5+2x)^{14}$ in ascending powers of x. Let T_r be the term containing x^r in the above expansion for r = 0, 1, 2, ..., 14.

Show that
$$\frac{T_{r+1}}{T_r} = \frac{2(14-r)}{5(r+1)} x \text{ for } x \neq 0$$
.

Hence, find the value of r which gives the largest term of the above

expansion, when $x = \frac{4}{3}$.