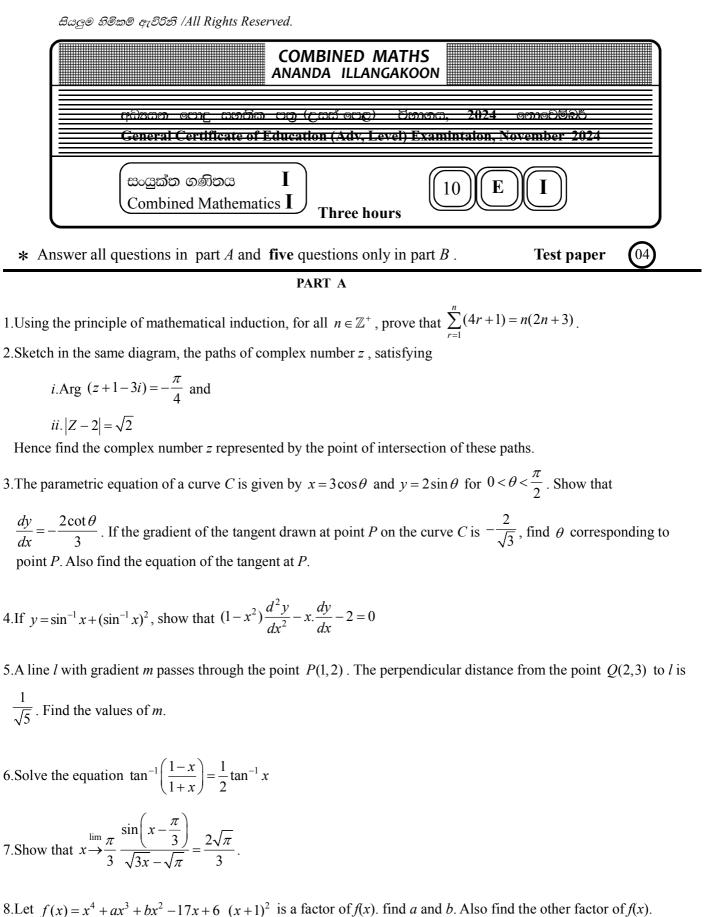
AL/2024/10/E/I



9. Find the area enclosed by the curve $y=9-x^2$ and the line x-y+3=0

AL/2024/10/E/I 🚿

10. In the same diagram sketch the graphs of y = 3|x-1| and y = |x|+3. Hence or otherwise find all real values of x satisfying 3|2x-1| > 2|x|+3.

PART B

11.*a*.Let $f(x) = kx^2 + (k-1)x + (1-2k)$, where $k \in \mathbb{R}^+$. Show that f(x) = 0 has real roots. If the roots of f(x) = 0 are α and β , find $\alpha + \beta$ and $\alpha\beta$ in terms of k. find the range of k, such that both roots are positive. Also find the equation with the roots α^2 and β^2 . If a root of f(x) = 0 is three times of the other root, find the values of k.

b.Let $f(x) = 2x^3 + ax^2 + bx - 9$. (x - 3) is a factor of f(x) and, when f(x) is divided by (x + 1) the remainder is 8. Find *a*, *b* and all factors of f(x). Hence solve the equation $16x^3 + 4ax^2 = 9 - 2bx$.

12. *a*.A committee of five members is to be formed from children of two schools *A* and *B* with boys and girls given below

school	Boys	Girls
A	3	4
В	7	5

For each of the following find the different number of committees.

i. Including any five.

ii. Representing both male and female.

iii. Any five including both schools *A* and *B*.

iv. Any five, representing both schools *A* and *B* and it is compulsory to represent male and female from each school.

b.Let $\lambda > 0 \ (\neq 1)$ and $r \in \mathbb{Z}^+$.

Show that $\frac{2}{r+\lambda} - \frac{2}{r+\lambda-2} = \frac{-4}{(r+\lambda)(r+\lambda-2)}$.

Hence find, v_r such that $u_r = v_r - v_{r+2}$. Where $u_r = \frac{2}{(r+\lambda)(r+\lambda-2)}$.

Prove that $\sum_{r=1}^{n} u_r = \frac{2\lambda - 1}{\lambda(\lambda - 1)} - \left[\frac{2(\lambda + n) - 1}{(n + \lambda)(n + \lambda - 1)}\right].$

Show that the series $\sum_{r=1}^{\infty} u_r$ is finite and find its sum. By giving a suitable value for λ deduce that

 $\sum_{r=1}^{\infty} \frac{2}{(r+1)(r+3)} = \frac{5}{6}.$ 13.*a*. The matrices $P = \begin{bmatrix} 1 & 0 \\ 0 & \lambda \\ \lambda & -2 \end{bmatrix}, \quad Q = \begin{bmatrix} -2 & \lambda \\ 3 & 4 \\ 0 & -1 \end{bmatrix}$ and $R = \begin{bmatrix} \mu - 1 & 0 \\ -3 & \mu - 1 \end{bmatrix}$ are three matrices such that $P^T Q = R$.

Where $\lambda, \mu \in \mathbb{R}$. Show that $\lambda = \mu = -1$. Write down matrix *R*. Now by considering this matrix *R* and the matrix

AL/2024/10/E/I /////

$$A = \begin{pmatrix} -\frac{1}{2} & 0\\ \frac{3}{4} & -\frac{1}{2} \end{pmatrix}$$
, show that $A = R^{-1}$. When $S = \begin{pmatrix} 0 & 0\\ 3 & 0 \end{pmatrix}$

Show that *i*. (R + I). S = -S and

$$ii. R + 2I + S = 0$$

Hence deduce that (R+2I)(S-I) = S. Where *I* is the unit matrix of order 2.

b.Let
$$z_1 = -1 + 2i$$
 and $z_2 = 2 + i$
Find $\frac{z_1}{z_2}$ and deduce $\frac{z_2}{z_1}$. Hence obtaining $\frac{z_1 + z_2}{z_1}$ and $\frac{z_1 + z_2}{z_2}$

deduce that $i.\frac{z_1 + z_2}{z_2} + \frac{z_1 + z_2}{z_1} = 2$ and

$$ii. \frac{(z_1)^2 - (z_2)^2}{z_1 z_2} = 2i$$

14.*a*.Let, $f(x) = \frac{x(x+3)}{(x+1)^2}$, for $x \neq -1$. Show that f'(x) the first derivative of f(x) is given by $f'(x) = \frac{3-x}{(x+1)^3}$.

Hence find the range of f(x) increasing and f(x) decreasing. Also show that the second derivative f''(x) of

A

B

$$f(x)$$
 is given by $f''(x) = \frac{2(x-5)}{(x+1)^4}$.

Sketch the graph of y = f(x) indicating, asymptotes, y - intercepts, turning points, and points of inflection.

b. In the triangle *ABC*, AB = AC and $A\hat{C}B = 2\theta$. The radius of the in - circle of the triangle *ABC* is *a* and its centre is *I*. Where *a* is a constant. If the perimeter of *ABC* triangle is *P*. Show that $P = 4a\cot\theta + 2a\tan 2\theta$. Show that the minimum value of *P* is $6\sqrt{3a}$.

15.*a*.For all $x \in \mathbb{R}$, it is given that $x^3 + 5x^2 + 14x + 29 = A(x+2)(x^2+9) + (2x+B)(x+2) + (x^2+9)$.

Find the values of A and B.

Hence write
$$\frac{x^3 + 5x^2 + 14x + 29}{(x+2)(x^2+9)}$$
 in partial fractions and find $\int \frac{x^3 + 5x^2 + 14x + 29}{(x+2)(x^2+9)} dx$

b.Using integration by parts evaluate $\int_{0}^{3} 2\sin x \ln(\sec x) dx$

c.for $0 \le \theta \le \frac{\pi}{4}$ using the substitution $x = 2\cos 2\theta$, show that $\int_{0}^{2} \sqrt{\frac{2-x}{2+x}} dx = \pi - 2$.

Hence deduce the value of $\int_{-\infty}^{\sqrt{2}} x \sqrt{\frac{2-x^2}{2+x^2}} dx$

ANANDA ILLANGAKOON (B.sc , maths) 3

16. Find the coordinates of the point of intersection P of the lines $l_1 \equiv y = mx$ and $l_2 \equiv 2mx - 3y + 1 = 0$,

where m > 0. If this point P is situated a distance $\sqrt{2m}$ from the origin. show that m = 1.

Find the equation of the line l_3 that passes through the point of intersection of $l_1 = 0$ and $l_2 = 0$ making an intercept of 2(units) on positive *x* - axis.

Let the line $l_2 = 0$ cuts *y* - axis at *A* and $l_3 = 0$ cuts *x* - axis at *B*. Find the equation $S_1 = 0$ of the circle passing through the points *O*, *A* and *B*.

Also find the equation $S_2 = 0$ of the circle with *P* as the centre and radius *PA*. Do the circles $S_1 = 0$ and $S_2 = 0$ intersect orthogonally.? justify your answer, find the equation of the circle with *P* as the centre and orthogonal to $S_1 = 0$.

17.*a*.Let $f(x) = 11\cos^2 x + 16\cos x \cdot \sin x - \sin^2 x$. Express f(x) in the form $a + b\cos(2x - \alpha)$. where a, b and α are constants to be determined.

Hence for $0 \le x \le \pi$, sketch the graph of y = f(x). Find the solutions of f(x) = 0 in $\theta \le x \le \pi$.

b.For any triangle *ABC*, state and prove "cosine" rule. In the triangle *ABC*, the lengths of the sides *BC*, *CA*, *AB* are a, a + d, a + 2d, respectively.

Prove that $\cos C = \frac{1}{2} - \frac{3d}{2a}$.

Hence find the range of values of $\frac{d}{a}$ such that $\frac{2\pi}{3} < C < \pi$.

c.Solve the equation $\tan^{-1}(5\tan^2 x) + \tan^{-1}(\cos^2 x) = \frac{\pi}{4}$.

* * *