Quadratic Equations

01.Sketch the graph for the following quadratic functions. (i). $y = x^2 + x - 2$ (ii). $y = x^2 + 2x - 8$ (iii). $y = -3x^2 + 5x - 2$ (iv). $y = 2x^2 + 3x - 2$ (v). $y = -2x^2 - 7x + 4$ 02.Sketch the graph for the following quadratic functions. (i) $y = x^2 + 4x + 4$ (ii) $y = -x^2 + 6x - 9$ (iii) $y = x^2 + 4x + 8$ (iv) $y = -x^2 - 2x - 5$ (v) $y = x^2 + 6x + 18$ 03. Sketch the graph of $y = x^2$ and hence sketch the graph of (i) $y = x^2 - 1$ (ii) $y = x^2 + 1$ (iii) $y = (x - 1)^2 + 1$ (iv) $y = (x + 2)^2 + 1$ (v) $y = x^2 - 4x + 5$ (vi) $y = x^2 + 4x + 3$ 04 *a*. Sketch the graph of $y = x^2 + 2x - 3$ and hence sketch the graph of (i) $y = x^2 + 2x$ (ii) $y = x^2 + 2x + 6$ (iii) $y = x^2 - 4$ (iv) $y = x^2 + 4x$ *b*.i.Using the substitution, $u = x^2$ solve $x^4 - 2x^2 + 1 = 0$ ii.Using substitution $u = x^3$ 1 $u = x³$ Solve the the equation $2x^3 - 3 = 0$ 1 3 2 $x^{\overline{3}} + 2x^{\overline{3}} - 3 = 0$ iii.Solve $\sqrt{\frac{2+x}{3+x}} - 4\sqrt{\frac{3+x}{2+x}} = 3$ $-4\sqrt{\frac{3}{2}}$ 3 $\frac{2+x}{2} \quad 4 \sqrt{\frac{3+x}{2}} =$ $^{+}$ $\frac{+x}{+x}$ - $4\sqrt{\frac{3+}{2+}}$ $\frac{+x}{+x} - 4\sqrt{\frac{3+x}{2+x}}$ *x x x c*.i. Let *x* $u = x + \frac{1}{x}$, Show that $x^2 + \frac{1}{x^2} = u^2 - 2$ 2 2 + $\frac{1}{2}$ = u^2 *x x* Hence Solve, $x^4 - 4x^3 - 3x^2 - 4x + 1 = 0$ ii. Solve $\sqrt{x^2 - 3x + 16} - \sqrt{x^2 - 3x + 9} = 1$. 05*.*Find the range of values of *x* that satisfy the following inequalities. *i.* $(x-1)(x-2) > 0$ $ii. (x+1)(x-2) > 0$ *iii.* $(x-3)(x-5) < 0$ *iv.* $(2x-1)(x+1) < 0$ *v.* $x^2 - 4x > 5$ $x^2 - 4x > 5$ *vi.* $4x^2 < 1$ $x^2 < 1$ *vii.* $5x^2 > 3x + 2$ *viii.* $(2-x)(x+4) < 0$ *ix.* $(x-1)^2 > 4x^2$
x. $(x-1)(x+2) < x(4-x)$ 06. The expression $-x^2 + 4px - 9$ is negative for all real values of *x*. Show that $\frac{1}{2} < p < \frac{1}{2}$ 3 2 $\frac{-3}{2}$ < p < $p < \frac{3}{2}$. 07Find the range of *t* for which $x^2 + (t-1)x + t + 2 > 0$ for all real values of *x*. 08. Find the range of *k*. So that $f(x) = 2x^2 + 2kx + (k^2 + 3k + 4)$ is positive for all real values of *x* 09. Find the range of values of *p* for the expression $px^2 + (2p-1)x+1$ to be positive for all real values of *x*. 10.Let $f(x) = (p-2)x^2 - 3px + p-2$. Find the range of p such that $f(x)$ is negative for all real x.

11. Let $y = ax^2 + bx + c$. Where $a \neq 0$, *b*, *c* are real numbers.

- (i). Express *y* in the form $y = \lambda(x + \alpha)^2 + \beta$.
- (ii). Hence determine coordinates of the vertex
- (iii). Find the roots of *y*.
- (iv). Determine conditions required for the roots of y to be,
- (a). real distinct (b).real coincident (c). imaginary

12. Using algebraic methods, obtain conditions required for the roots of $y = ax^2 + bx + c$ to be,

(a). real distinct (b). real coincident (c). imaginary

13. Show that the roots of $x^2 - 2ax + a^2 - b^2 - c^2 = 0$ are real. Where a, b, c are real numbers.

14. Show that when $a < c < b$ the roots of $(a - b)^2 x^2 + 2(a + b - 2c)x + 1 = 0$ are imaginary.

15. If the equation $x^2 - 2(1+3k)x + 7(3+2k) = 0$ has equal roots, find the value of *k*.

16. When the roots of $ax^2 + bx + c = 0$ are real, show that the roots of $x^2 + 2 - 2c$ $|x + 1 = 0$ $x^2 + \left(2 - \frac{b^2}{ac}\right)x + 1 =$ \backslash $\overline{}$ \setminus ſ $+|2-\frac{b}{x}|$ *ac* $x^2 + \left(2 - \frac{b^2}{s}\right)x + 1 = 0$ are also real. Where $abc \neq 0$.

- 17. If the roots of $ax^2 + bx + c = 0$ are real and positive then show that the roots of $a^2x^2 + (2ac b^2)x + c^2 = 0$ are also real and positive.
- 18. Write down the condition required for the graph $y = ax^2 + bx + c$ and the line $y = mx + c'$ i . to intersect each other *ii*. to touch each other *iii*. to be in separate

a show that $y = x^2 - 1$ and $y = x - 1$ intersect each other and find their points of intersection. *b*. show that $y = 2x^2 + 4x + 1$ and the line $2y - 4x - 1 = 0$ touch each other and find the point of contact. *c*. show that $y = x^2 - 2x + 2$ and the line $2y + x + 4 = 0$ donot intersect each other.

19. sketch the graph of $f_1(x) = x^2 - 6x + 8$ and find the minimum value of $f_1(x)$. Let $f_2(x) = -x^2 + 6x + k$ $\sum_{2}^{8}(x) = -x^2 + 6x + k$ where *k* is constant. Express $f_2(x) = a(x-3)^2 + b$ $\sum_{i=2}^{3}(x)=a(x-3)^2+b$ where *a* and *b* are constants to be determined.

Hence evaluate the maximum value of $f_2(x)$ and sketch its graph on the same diagram. Hence show that the equation $f_1(x) = f_2(x)$

(*i*) has two distinct real roots when $k > -10$

(*ii*) has a real root when $k = 10$

(*iii*) has no real roots when $k < -10$

- 20.(*a*) If $\Delta = b^2 4ac$ write down condition required for $y = ax^2 + bx + c$ to have distinct real roots and imaginary roots. Let $f(x) = (a-1)x^2 - 2(a-1)x + 2a + 3$
- (*i*) find range of *a* such that $f(x) > 0$ for all $x \in \mathcal{R}$,
- (*ii*) show that the graph $f(x)$ touches $x axis$ when $a = -4$
- (*iii*) show that the equation $f(x) = 0$ has imaginary roots when $a < -4$ or $a > 1$
- (*b*) Let $y_1 = x^2 x + m$ $y_1 = x^2 - x + m$ and $y_2 = mx$. Show that the quadratic equation $y_1 = y_2$ has distinct real roots if and only if $m \neq 1$

21. Show that the roots of the quadratic equation $ax^2 + bx + c = 0$ are given by *a* $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ 2 $=\frac{-b\pm\sqrt{b^2-4ac}}{2}$.

Where $a \neq 0$ is a real constant. Let $\Delta = b^2 - 4ac$. Give in terms of Δ , conditions required for the above equation to have

 *i.*real distinct roots. *ii.*real coincident roots. *iii.* imaginary roots.

Solve the following equations.

a. $x^2 - 3x + 2 = 0$. *b.* $2x^2 + 11x + 5 = 0$. *c.* $x^2 + 6x + 9 = 0$.

22.If $x + \frac{1}{x} = t$ *x* $x + \frac{1}{2} = t$, show that $x^2 + \frac{1}{2} = t^2 - 2$ 2 $t^2 + \frac{1}{2} = t^2$ *x* $x^2 + \frac{1}{2} = t^2 - 2$ using these substitutions, solve the following equations completely. (i). $5x^4 - 11x^3 + 16x^2 - 11x + 5 = 0$ (ii). $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$ (iii). $x^4 - 2x^3 + 6x^2 - 2x + 1 = 0$

23.(*i*). If *x* is real, find the minimum and maximum value of $\frac{x^2 + 2x + 9}{x^2 + 2x + 9}$ $14x + 9$ 2 2 $+2x+$ $\frac{x^2 + 14x + x^2}{x^2 + 2x + y^2}$ $x^2 + 14x$.

(*ii*).If $9x^2 + 2xy + y^2 - 92x - 20y + 244 = 0$. Show that $3 \le x \le 6$ and $1 \le y \le 10$ where *x*, *y* are real.

24. Find the following in terms of $\alpha + \beta$ and $\alpha\beta$.

(i).
$$
\alpha^2 + \beta^2
$$
 (ii). $\alpha^3 + \beta^3$ (iii). $\alpha^4 + \beta^4$ (iv). $\alpha - \beta$ (v). $\alpha^2 - \beta^2$ (vi). $\alpha^3 - \beta^3$
(vii). $\frac{1}{\alpha} + \frac{1}{\beta}$ (viii). $\alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta}$ (ix). $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (x). $\alpha^2 + \beta + \beta^2 + \alpha$ (xi) $\alpha^4 - \beta^4$

25. If the roots of $ax^2 + bx + c = 0$ are α, β , show that $\alpha + \beta = -\frac{b}{a}$ $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ $\alpha\beta = \frac{c}{n}$. Hence find the following in terms of *a,b,c* (*i*). $\alpha^2 + \beta^2$ (*ii*). $\alpha^3 + \beta^3$ (*iii*). $\alpha^4 + \beta^4$ (*iv*). $\alpha - \beta$ (*v*). $\alpha^2 - \beta^2$ (*vi*). $\alpha^3 - \beta^3$ $\frac{1}{\alpha} + \frac{1}{\beta}$ (*viii*). $\alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta}$ $\alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta}$ (ix). $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ $_{\beta}$ $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (x). $\alpha^2 + \beta + \beta^2 + \alpha$ (xi) $\alpha^4 - \beta^4$

(*vii*). $\overline{\alpha}$ + $\overline{\beta}$ $_{\beta}$

26. The roots of $x^2 + 2ax + b^2 = 0$ are α_1 , β_1 and that of $x^2 + 2cx + d^2 = 0$ are α_2 , β_2 . If $\alpha_1 + \alpha_2 = \beta_1 + \beta_2$. Show that $a^2 + d^2 = b^2 + c^2$.

- 27. α , β are the roots of $ax^2 + 2bx + c = 0$ and γ , δ are the roots of $px^2 + 2qx + r = 0$ If α , β , γ , δ lie in geometric progression. Show that $\frac{1}{b^2} = \frac{2}{q^2}$ *pr b* $\frac{ac}{b^2} = \frac{pr}{a^2}$.
- 28. The roots of $ax^2 + 8(b-a)x + 4(4a-8b+c) = 0$ are $4-2\alpha$, $4-2\beta$. Show that the quadratic equation with the roots α , β is $ax^2 - 4bx + c = 0$.

29. α and β are the roots of $x^2 + ax + b = 0$. Show that the roots of $bx^2 + (2b - a^2)x + b = 0$ are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ $\frac{\beta}{\alpha}$. 30.*a*). If α, β are the roots of the equation $ax^2 - bx + c = 0$ form the equation whose roots are $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$ $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$. *b*). If the roots of $x^2 + px + q = 0$ are α and β where α and β non-zero form the equation whose roots are

 $\alpha^{\scriptscriptstyle\vee}$ β $\frac{2}{2}$, $\frac{2}{3}$

.

c). If α and β are the roots of the equation $ax^2 + bx + c = 0$. Show that the roots of the equation $acx^2 - (b^2 - 2ac)x + ac = 0$ are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

31. The roots of the quadratic equation $x^2 - px + q = 0$ are α and β .

Form, in terms of p and q, the quadratic equation whose roots are $\alpha^3 - p\alpha^2$ and $\beta^3 - p\beta^2$.

32.*a*).Form a quadratic equaton wth roots which exceed by2 the roots of the quadratic equation $3x^2 - (p-4)x - (2p+1) = 0$. Find the values of p for which the given equatoin has equal roots.

b). Given that the roots of the equation $ax^2 + bx + c = 0$ are β and $n\beta$. Show that $(n+1)^2 ac = nb^2$.

1 .

33.*a*). Given that the roots of $x^2 + px + q = 0$ are α and β , form an equation whose roots are $\frac{1}{\alpha}$ 1 and $\overline{\beta}$ *b*). Given that α is a root of the equation $x^2 = 2x - 3$. Show that,

i. $\alpha^3 = \alpha - 6$ $\alpha^3 = \alpha - 6$ *ii.* $\alpha^2 - 2\alpha^3 = 9$

34.*a*). Find the set of values of k for which the equation $x^2 + kx + 2k - 3 = 0$ has no real roots. When $k = 7$, the roots of the equaiton $x^2 + kx + 2k - 3 = 0$ are α and β where $\alpha > \beta$. *b*). Write down the values of $(\alpha + \beta)$ and $\alpha\beta$.

c). Form an equation with integral coefficients whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ $_{\beta}$.

d). Prove that $\alpha - \beta = \sqrt{5}$.

. Given that α and β are the roots of the equation $3x^2 + x + 2 = 0$.

i). Evaluate $\sqrt{a^2 + \sqrt{a^2}}$ $1 \quad 1$ α^2 β $+\frac{1}{\sqrt{2^2}}$.

ii). Find an equation whose roots are $\frac{1}{\alpha^2}$ 1 $\overline{\alpha^2}$ and $\overline{\beta^2}$ 1 $\overline{\beta^2}$.

iii).Show that $27\alpha^4 = 11\alpha + 10$.

36.*a*). Show that the roots of $x^2 + 2(t+1)x - (2t+3) = 0$ are real for all values of *t*.

b). Show that the roots of $(k^2 + 1)x^2 - (2k - 1)x - 3 = 0$ are real for all values of *k*.

37. If the roots of the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ are coincident, prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ $\frac{1}{1}, \frac{1}{1}, \frac{1}{1}$ are in arithmatic progression.

38. If the roots of the equation $ax^2 + bx + c = 0$ are in the ratio $\frac{1}{q}$ *p* prove that $ac(p+q)^2 = b^2 pq$.

39. The equations $ax^2 + a^2x + 1 = 0$ and $bx^2 + b^2x + 1 = 0$ have a common root. Show that the other two roots satisfy the equation $x^2 - (a+b)x + ab = 0$.

40. If the equations $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ have a common root, show that $ar - pc$ ² = (aq – bp)(br – qc).

41. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$, $(a \ne b)$ have a common root show that the roots of $2x^2 + (a+b)x = (a+b)^2$ are $x=1, x=-\frac{1}{2}$ $x = 1, x = -\frac{1}{2}$.

42. If the equations $kx^2 + 2x + 1 = 0$ and $x^2 + 2x + k = 0$ have a common root find *k*.

43. When $a \neq p$, if the equations $x^2 + 2ax + b = 0$ and $x^2 + 2px + q = 0$ have a common root, show that $(q-b)^2 = 4(p-a)(aq-bp)$.

44. The equations $x^2 + ax + b = 0$ and $cx^2 + 2ax - 3b = 0$ have a common root. When $a \neq 0, b \neq 0$,

show that
$$
b = \frac{5a^2(c-2)}{(c+3)^2}
$$
.

45. The equations $x^2 - px + \lambda = 0$ and $x^2 - qx + \mu = 0$ have a common root. If the roots of the second equation are equal, show that $2(\lambda + \mu) = pq$.

46. The roots of $x^2 + px + q = 0$ are α, β and the roots of $x^2 + ax + b = 0$ are $\frac{1}{\alpha}, \gamma$

Show that $(p - aq)(a - pb) = (1 - bq)^2$. Show also that the equation whose roots are β , γ is

$$
x^{2}(1-bq) - x[(a+p)bq - (aq+bp)] + bq(1-bq) = 0.
$$

- 47.*i*. The equations $x^2 + ax + b = 0$ and $x^2 + mx + n = 0$ have a common root. Then show that the equations $x^2 + ax + b = 0$ and $x^2 + (2a - m)x + a^2 - am + n = 0$ also have a common root
- *ii*. If $\alpha^2 + \beta^2 = 5$, $3(\alpha^5 + \beta^5) = 11$, $(\alpha^3 + \beta^3)$ where α, β are real, show that the quadratic equation whose roots are α , β is $x^2 \pm 3x + 2 = 0$

48. α and β are the roots of $ax^2 + bx + c = 0$ and $\alpha + h, \beta + h$ are the roots of $px^2 + qx + r = 0$ show that

i.
$$
h = \frac{1}{2} \left[\frac{b}{a} - \frac{q}{p} \right]
$$

ii. $\frac{b^2 - 4ac}{a^2} = \frac{q^2 - 4pr}{p^2}$

49.*i*. The equation $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root. Show that this common root can be

either
$$
\frac{pq' - p'q}{q - q'}
$$
 or $\frac{q - q'}{p' - p}$ where $p \neq p'$ and $q \neq q'$
ii. α, β are the roots of $px^2 + qx + r = 0$ If $f(x) = ax^2 + bx + c$ show that

$$
f(\alpha) f(\beta) = \frac{(cp - ar)^2 - (bp - aq)(cq - br)}{p^2}
$$
Hence or otherwise, if there exists a common root to the equations $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$

then show that $bp - aq$, $cp - ar$ and $cq - br$ lie in geometric progression.

- 50. If a, b, c are in geometric progression and if the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root then show that $\frac{a}{a}$, $\frac{b}{b}$, $\frac{c}{c}$ *f e* $\frac{d}{dx}$, $\frac{e}{dx}$, $\frac{f}{dx}$ are in arithmetic progression.
- 51(*i*). Using the substitution $t = x + x^{-1}$, solve $x^4 10x^3 + 26x^2 10x + 1 = 0$.

b

a

- (*ii*). If the roots of the equation $(q r)x^2 + (r p)x + p q = 0$ are equal, show that p, q, r lie in an arithmetic progression.
- 52.(*i*). If the roots of $x^2 px + q = 0$ are α, β , find the quadratic equation whose roots are $\alpha^3 - p\alpha^2$) and $(\beta^3 - p\beta^2)$.
- (*ii*). If the roots of $3x^2 5x + 7 = 0$ are α, β . Show that $3(\alpha^{2006} + \beta^{2006}) = 5(\alpha^{2005} + \beta^{2005}) - 7(\alpha^{2004} + \beta^{2004}).$
- (*iii*) α , β are the roots of $x^2 px q = 0$. When $n > 1$ is an integer show that $\alpha^{n} + \beta^{n} = p(\alpha^{n-1} + \beta^{n-1}) + q(\alpha^{n-2} + \beta^{n-2})$. When α, β are the roots of $x^{2} - 2x - 1 = 0$, find $\alpha^{5} + \beta^{5}$. Find the quadratic equation with the roots α^5 , β^5 .

53.(*i*). The roots of $x^2 - a(x-1) + b = 0$ are α, β . Find the value of

$$
\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - b\beta} + \frac{2}{a+b}
$$
 where $a \neq 0$.

(*ii*). The roots of $x^2 + 2px + q^2 = 0$ and $x^2 + 2mx + n^2 = 0$ are α_1, β_1 and α_2, β_2 respectively.

- (*a*). If $\alpha_1 + \alpha_2 = \beta_1 + \beta_2$, show that $p^2 + n^2 = q^2 + m^2$.
	- (*b*). If $\alpha_1 \alpha_2 + \beta_1 \beta_2 = 0$, show that $p^2 n^2 = q^2 m^2$.

54. Given that $f(x) = x^2 + (k+2)x + 2k$.

- (*i*). Show that for all real values of *k* the roots of $f(x) = 0$ are real.
- (*ii*). Find the roots of $f(x-k) = 0$.
- (*iii*). If the roots of $f(x-k) 2x = 0$ are $x = 0$ and $x = 7$, show that $k = 7$.

55. The quadratic equations $a_r x^2 + 2b_r x + c_r = 0$ where $r = 1,2$ have a common root. a_1, b_1, c_1 lie in geometric progression. Show that $\frac{1}{a_1}$, $\frac{1}{b_1}$, $\frac{1}{c_1}$ 2 1 2 1 $\frac{2}{1}, \frac{\nu_2}{1},$ *c c b b a a* lie in arithmetic progression $a_1, a_2, b_1, b_2, c_1, c_2$ are positive real numbers.

56. (α, β) are the roots of $ax^2 + bx + c = 0$ and (α, γ) are the roots of $a^1x^2 + b^1x + c^1 = 0$. By considering the common root show that $(c a^1 - c^1 b)^2 = (b c^1 - b^1 c)(a b^1 - a^1 b)$.

Also show that $\frac{a a^1 (b c^1 - b^1 c)}{a a^1 (b c^1 - b^1 c)} = \frac{c^1 a (a b^1 - a^1 b)}{c^1 a (a b^1 - a^1 b)}$ $=$ \overline{a} $=$ \overline{a} α β γ *.*

57.*i*. If α, β are the roots of the quadratic equation $x^2 + px + 1 = 0$ and γ, δ are the roots of the quadratic equation $x^2 + qx + 1 = 0$ then show that, $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta) = q^2 - p^2$.

*ii.*Let α, β are the roots of the equation $x^2 + qx + 1 = 0$ and γ, δ are the roots of the equation $x^2 + x + q = 0$ show that $(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = (\gamma^2 + q\gamma + 1)(\delta^2 + q\delta + 1)$ determine all possible values for q such that the given equations have at least one real root in common.

58.Let α and β be the roots of the equation $x^2 + px + 1 = 0$ and let γ and δ be the roots of the equation $\frac{1}{2}$

$$
\frac{x^2 + \frac{1}{p}x + 1}{p} = 0.
$$

Show that $(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = (\gamma^2 + p\gamma + 1)(\delta^2 + p\delta + 1)$

 and deduce that $(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = \left(p - \frac{1}{p}\right)^2$ \setminus $\overline{}$ \setminus $-\gamma(\beta-\gamma)(\alpha-\delta)(\beta-\delta)=\begin{pmatrix} p \end{pmatrix}$ $(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = \left(p - \frac{1}{p}\right)$.

59.*i.* Show that the solutions of the equation $2 - \sqrt{3}$ $(2+\sqrt{3})^{x^2-2x+1}$ + $(2-\sqrt{3})^{x^2-2x-1}$ = $\frac{2}{2}$ \overline{a} $+\sqrt{3}$ ^{x²-2x+1} + $\left(2-\sqrt{3}\right)^{x^2-2x-1}$ = $\frac{2}{\sqrt{3}}$ are x = 0, x = 2.

ii. Solve $\left(3-2\sqrt{2}\right)^{x^2-2} + \left(3+2\sqrt{2}\right)^{x^2-2} - 6 = 0$.

60. Let $a < b < c$ be three real numbers. Given that

 $f(x) = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a)$. Show that $f(x) = 0$ has two real distinct roots. If these roots are α, β , find $\alpha + \beta$ and $\alpha\beta$ in terms of a, b,c.

(*i*).If α , β , β lie in arithmetic progression then show that *c*, *b*, *a* alsolie in arithmetic progression.

(*ii*). Show also that $f(a) = f(c) = -2f(b)$.

(*iii*).If *c, b, a* lie in geometric progression, show that $\frac{\partial}{\partial s}$, $\frac{\partial}{\partial t}$ $\frac{1}{1}, \frac{1}{1}, \frac{1}{2}$ \overline{b} , $\overline{\beta}$ lie in arithmetic progression.

- 61.(*i*). The roots of $k^2x^2 + (kx+1)(x+k)+1=0$ are α, β . Write down expressions for $\alpha + \beta, \alpha\beta$ in terms of k. Show that $\alpha^2 \beta^2 + (\alpha \beta + 1)(\alpha + \beta) + 1 = 0$.
- (*ii*). α, β are the roots of the equation $x^2 + bx + c = 0$. Write down the equation whose roots are α^2 and β^2 . Hence if the roots of $x^2 + x - 1 = 0$ are α, β , find the equation with the roots α^{16}, β^{16} .

Using this show that $(2207)^{16} \approx \frac{\sqrt{2}}{2}$ $(2207)^{\frac{1}{16}} \approx \frac{\sqrt{5}+1}{2}$.

62. Let $x^2 - kx + 4 = 0$.

(*i*). Find the range of *k*, such that the roots of this equation are real positive.

(*ii*). Show if the roots are positive and in 3 : 1, that the value of *k* is $\frac{1}{\sqrt{3}}$ 8 .

(*iii*). The roots of $x^2 + bx + c = 0$ are α, β . Where *b* and *c* are real. Obtain the equation whoose roots are α^3 , β^3 . If $b^3 - 6b + 9 = 0$ and $c = 2$, find the real values of α and β . Hence find the real root of $y^3 - 6y + 9 = 0$.

63. Given that $f(x) = x^2 + 4x + a + 2$.

(*i*). If the equation $f(x) = ax$ has two roots, then find the range of a.

- (*ii*). If the roots of $f(x) = 0$ are α, β find the equation whose roots are $\alpha + \frac{1}{\alpha}$ $\alpha + \frac{2}{\alpha}$ and $\beta + \frac{2}{\beta}$.
- (iii). If $f(x) = (x^2 + 1)(2 a)$ has one real root, show that the values of a are -1 and 2.

64. (*i*). Show the equation $\frac{x}{x-a} + \frac{x}{x-b} = 1$ $\frac{x}{-a} + \frac{x}{x-b}$ *x* $x - a$ *x* to have real distince roots that *a* and *b* must take the same $sign. (a, b \in \mathfrak{R})$

(*ii*).Show, for the roots of $\frac{x}{x-a} + \frac{x}{x-b} = 1+c$ *x* $x - a$ $\frac{x}{-a} + \frac{x}{x-b} = 1 +$ $\frac{x}{-a} + \frac{x}{x-b} = 1+c$ to be coincident that $c^2 = \frac{-4ab}{(a-b)^2}$ *a b* $c^2 = \frac{-4ab}{(a-b)^2}$ \overline{a} $=\frac{-4ab}{(a^2)^2}.$

 Deduce that 2 $a^2 = 1 - \left(\frac{a+b}{a-b}\right)^2$ $\left(\frac{a+b}{b}\right)$ \setminus ſ $\overline{}$ $=1-\frac{a+}{}$ *a b* $c^2 = 1 - \left(\frac{a+b}{a-b}\right)^2$. Hence show that $0 < c^2 \le 1$ where $a, b, c \in \Re$

- 65. If p and q are real numbers, when $b^2 4ac < 0$ express $ax^2 + bx + c$ in the form $a\sqrt{(x+p)^2 + q^2}$. Hence, when $a > 0, b^2 - 4ac < 0$, show that $ax^2 + bx + c$ is always positive. If $f(x) = 3x^2 - 5x - k$ find the value of *k*, so that $f(x) > 1$ for all values of *x*. Show also that $f(x)$ assumes its minimum at $x = \frac{1}{6}$ $x = \frac{5}{6}$ and find the value of *k* corresponding to mimimum zero.
- 66. Express $ax^2 + bx + c$ in the form $a\{(x+m)^2 + n\}$. Where *m, n* are to be determined interms of *a, b, c*. $ax^2 + bx + c$ assumes its minimum value -9 at $x = -\frac{1}{3}$ $x = -\frac{1}{3}$. If a root of $ax^2 + bx + c = 0$ is $\frac{8}{3}$ find the values of *a, b* and *c*.
- 67.*i*). The roots of $x^2 + bx + c = 0$ are α_1, β_1 and the roots of $x^2 + kbx + k^2c = 0$ are α_2, β_2 . Show that the equation with the roots $\alpha_1\alpha_2 + \beta_1\beta_2$ and $\alpha_1\beta_2 + \beta_1\alpha_2$ is $x^2 - kb^2x + 2k^2c(b^2 - 2c) = 0$.

Show also that the roots of this equation are always real.

(*ii*). The roots of $2x^2 - qx + r = 0$ are $\alpha + 1, \beta + 2$. Where α, β are the real roots of the equation $x^2 - bx + c = 0$. Given that $\alpha \ge \beta$. Find *q*,*r* interms of *b*, *c*. When $\alpha = \beta$, show that $q^2 = 4(2r + 1)$.

68.*i*). The roots of $(k-1)x^2 + kx + k - 2 = 0$ are α, β . Show that

2 2 $(k-1)$ $(2\beta)(2\alpha - \beta) = \frac{27k - 7k^2 - 18}{(k-1)^2}$ $\overline{}$ $(-2\beta)(2\alpha - \beta) = \frac{27k - 7k^2 - 7k^2}{2}$ *k* $\lambda(\alpha-2\beta)(2\alpha-\beta) = \frac{27k - 7k^2 - 18}{(k-1)^2}$. If α, β are real and α lies between $\frac{\beta}{2}$ and 2β , find the possible

values of *k*.

ii). The roots of $ax^2 + bx + c = 0$ are α, β . Show that $as_r + bs_{r-1} + cs_{r-2} = 0$. Where $s_r = \alpha^r + \beta^r$. Find $\alpha^4 + \beta^4$ interms of a, b, c.

69. Let α and β be the roots of the quadratic equation $x^2 + qx + r = 0$. Show that $\alpha + \beta = -q$ and $\alpha\beta = r$.

Let
$$
\alpha = 1 + \frac{1}{p}
$$
 and $\beta = 1 + \frac{1}{p+1}$, where $p(\neq 0,-1)$ is a real number.

- (*i*). Show that $(q+r+1)^2 = q^2 4r$ and $r \neq -1$.
- (*ii*). Find the quadratic equation with coefficients in terms of *q* and *r* whose roots are *p* $1 - \frac{1}{p}$ and $1 - \frac{1}{p+1}$ $1 - \frac{1}{\cdot}$ $^{+}$ \overline{a} $\frac{1}{p+1}$.
- 70. Let α and β be the roots of the quadratic equation $ax^2 + bx + c = 0$, where *a*, *b* and *c* are real numbers. Show that α and β are both
	- (*i*). real, if and only if $b^2 4ac \ge 0$.
	- (*ii*). purely imaginary, if and only if $b = 0$ and $ac > 0$.

Find the quadratic equation whose roots are α^2 and β^2 .

Show that the roots of this quadratic equation are both real, if and only if either α and β are both real or α and β are both purely imaginary.

71. α and β are the roots of the equation $x^2 + bx + c = 0$, where $c \ne 0$. Find the quadratic equation in terms of *b* and *c*, whose roots are $\alpha^3 \beta^2$ and $\alpha^2 \beta^3$. Hence, find thequadratic equation, in terms of *b* and *c*, whose

roots are
$$
\alpha^3 \beta^2 + \frac{1}{\alpha^2 \beta^3}
$$
 and $\alpha^2 \beta^3 + \frac{1}{\alpha^3 \beta^2}$.

72. Let $f(x) = x^2 + 2kx + k + 2$, where *k* is a real constant.

(*i*). Express $f(x)$ in the form $(x-a)^2 + b$, where *a* and *b* are constant to be determined in terms of *k*. Find the turning point of $f(x)$ without using calculus and show that this point is a minimum point. Find the minimum value of $f(x)$ in terms of *k*. Hence, show that the curve $y = f(x)$.

- (*a*). lies entirely above the *x*-axis if $-1 < k < 2$.
- (*b*). touches the *x*-axis if $k = -1$ or $k = 2$.
- (*c*). cuts the *x*-axis in two distinct points if $k < -1$ or $k > 2$.
- (*ii*). Prove that the straight line $y = mx$ intersects the curve $y = f(x)$ in two real and distinct points for all real and finite values of m if and only if $k < -2$.

73. Let α and β be the roots of the equation $x^2 + bx + c = 0$, and γ and δ be the roots of the equation $x^2 + mx + n = 0$ where $b, c, m, n \in \mathbb{R}$.

(*i*). Find $(\alpha - \beta)^2$ in terms of *b* and *c*, and hence write down $(\gamma - \delta)^2$ in terms of *m* and *n*. Deduce that if $\alpha + \gamma = \beta + \delta$ then $b^2 - 4c = m^2 - 4n$.

(*ii*).Show that $(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta) = (c - n)^2 + (b - m)(bn - cm)$. Deduce that the equations $x^2 + bx + c = 0$ and $x^2 + mx + n = 0$ have a common root if and only if $(c - n)^2 = (m - b)(bn - cm)$.

The equations $x^2 + 10x + k = 0$ and $x^2 + kx + 10 = 0$ have a common root, where *k* is a real constant. Find the values of *k*.

74.(*a*). α and β are the roots of the quadratic equation $f(x) \equiv x^2 + px + q = 0$ where *p* and *q* are real and $2p^2 + q \neq 0$. If $y(p-x) = p+x$ substituting for *x* in $f(x) = 0$ or otherwise, show that $g(y) = (2p^2 + q)y^2 + 2(q - p^2)y + q = 0$ where $y \neq -1$.

Hence, find the roots of the equation $g(y) = 0$ in terms of α and β .

Express
$$
\left(\frac{\alpha}{2\beta+\alpha}\right)^2 + \left(\frac{\beta}{2\alpha+\beta}\right)^2
$$
 in terms of *p* and *q*.

b). If *a*, *b*, *c* and *m* are constants such that $a + b + c = 0$ and $ab + bc + ca + 3m = 0$, prove that $(y + ax)(y + bx)(y + cx) = y(y^2 - 3mx^2) + abcx^3$. If $y = x^2 + m$, show that $\left(x^2 + ax + m\right)\left(x^2 + bx + m\right)\left(x^2 + cx + m\right) = x^6 + abcx^3 + m^3$

If $g(x) = x^6 + 16x^3 + 64$ has factors $\left(x^2 - 2x + m\right)\left(x^2 + ax + m\right)$ and $\left(x^2 + bx + m\right)$ find the values of *m, a* and *b*. Hence,

- (*i*). Show that $g(x)$ is non-negative for all *x*,
- (*ii*). Find the roots of the equation $g(x) = 0$.
- 75. Let $f(x) = x^2 + 2x + 9$; $x \in \mathbb{R}$.

i If α, β are the roots of $f(x)=0$ obtain the quadratic equation whose roots are α^2-1 and β^2-1 *ii*. Find the value of a real constant *k* for which the equation $f(x)=k$ has exactly one real root for *x*.

iii.Find the greatest value of $\frac{d}{f(x)}$ 1 $\overline{f(x)}$ giving the value of *x* for which it is attained.

iv. Determine the set of values of a real constant λ for which the equation $f(x) = \lambda x$ has no real solution for x.

76.Let $\lambda \in IR$ and $p(x) = (\lambda - 2)x^2 - 3(\lambda + 2)x + 6\lambda$

i. Find the least integral value of λ for which p(x) is positive for all $x \in \mathbb{R}$.

ii .For what values of λ does the equation $p(x)=0$ have two distinct real roots ?

iii.If the roots of $p(x)=0$ are real and if the difference of the roots is equal to

3, find λ

77.Let $\lambda \in \mathbb{R}$ and $p(x) = x^2 - 2\lambda(x-1) - 1$ show that the roots of $p(x)=0$ are real. Find all the values of λ such that the sum of the roots of $p(x)=0$ is equal to the sum of the squares of the roots.

78.Let $f(x) = x^2 + bx + c$ and $g(x) = x^2 + qx + r$ where $b, c, q, r \in \mathbb{R}$ and $c \neq r$ Let α , β be the roots of $g(x)=0$.

Show that $f(\alpha) f(\beta) = (c - r)^2 - (b - q)(cq - br)$. Hence, or otherwise. Prove that if $f(x)=0$ and $g(x)=0$ have a common root, then *b-q, c-r* and *cq-br,* are in Geometric proression.

If α , γ are the roots of $f(x)=0$, Show that the quadratic equation whose roots are β , γ is

$$
x^{2} - \frac{(c+r)(q-b)}{(c-r)}x + \frac{cr(q-b)^{2}}{(c-r)^{2}} = 0
$$

79. α and β are the roots of the equation $x^2 + bx + c = 0$ find the quadratic equation in terms of *b* and *c*, whose roots are α^3 and β^3 hence, find the quadratic equation, in terms of *b* and *c*, whose roots are

$$
\alpha^3 + \frac{1}{\beta^3}
$$
 and $\beta^3 + \frac{1}{\alpha^3}$

80. α and β are the roots of the equation $x^2 + bx + c = 0$, where $c \neq 0$. Find the quadratic equation in terms of *b* and *c*, whose roots are α^4 and β^4 . Hence, find the quadrtic equation in terms of *b* and *c*, whose roots are

$$
\frac{\alpha^4}{\beta^4} + 1
$$
 and
$$
\frac{\beta^4}{\alpha^4} + 1
$$

81. α and β are the roots of the equation $x^2 + bx + c = 0$, where $c \neq 0$. Find the quadratic equation, in terms of *b* and *c*, whose roots are $\alpha^3 \beta^2$ and $\alpha^2 \beta^3$.

Hence, find the quadratic equation in terms of *b* and *c* whose roots are $\alpha \beta + \frac{1}{\alpha^2 \beta^3}$ $3 \rho^2$ 1 $\alpha^2\beta$ $\alpha^3 \beta^2 + \frac{1}{\alpha^2 \beta^3}$ and $\alpha^2 \beta^3 + \frac{1}{\alpha^3 \beta^2}$ $2 \rho^3$ 1 $\alpha^3\beta$ $\alpha^2\beta^3 +$

82. The roots of the quadratic equation $ax^2 + bx + c = 0$ are α, β write down the values of $\alpha + \beta$ and $\alpha\beta$.

Find $\alpha^2 + \beta^2$ in terms of *a,b* and *c*. Find the quadratic equation whose roots are $\frac{\alpha^2}{\beta^2}$ 2 $_{\beta}$ $\frac{\alpha}{\beta^2}$ and $\frac{\beta^2}{\alpha^2}$ 2 α β .

Hence find the quadratic equation whose roots are $\frac{2}{\alpha^2 + \beta^2}$ 2 $\alpha^2 + \beta$ α $\frac{1}{2}$ and $\frac{1}{\alpha^2 + \beta^2}$ 2 $\alpha^2 + \beta$ $_{\beta}$ $\overline{+\beta^2}$.

82.*a*. α and β are the roots of the equation $x^2 + px + q = 0$. Find the quadratic equation in terms of *p* and *q* whose roots are $\alpha - \frac{2}{\beta}$ and $\beta - \frac{2}{\alpha}$ where $q \neq 0$. Hence find the quadratic equation in terms of *p* and *q* whose

roots are $\frac{\overline{\beta(2-\alpha)+2}}{\beta(2-\alpha)+2}$ $_{\beta}$ and $\overline{\alpha(2-\beta)+2}$ α

b. Using a suitable substitution, solve the equation $\left(x - \frac{x}{x+1}\right) + 2x\left(\frac{x}{x+1}\right) = 3$ 2 1 2 \vert = J $\left(\frac{x}{1}\right)$ L ſ $^{+}$ $\Big\}$ + $\left(x-\frac{x}{x}\right)$ J ſ $^{+}$ *x x*($\frac{x}{x}$ *x* $x - \frac{x}{x}$

- 83.*a*. If the quadratic equations $ax^2 + 2cx + b = 0$ and $ax^2 + 2bx + c = 0$ $(b \neq c)$ have a common root. Show that $a + 4b + 4c = 0$.
- *b*. If *a*,*b* and *c* are real numbers with $a \neq 0$ a is a root of $a^2x^2 + bx + c = 0$ and β is a root of $a^2x^2 bx c = 0$ and $0 < \alpha < \beta$, show that the equation $a^2x^2 + 2bx + 2c = 0$ has a root γ such that $\alpha < \gamma < \beta$

84.*a*. If $m(ax^2 + 2bx + c) + px^2 + 2qx + r$ can be expressed in the form $n(x + k)^2$. Show that $(ak-b)(qk-r) = (pk-q)(bk-c)$

b. If every pair from among the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$ and $x^2 + rx + pq = 0$ has a common root, then show that the sum of the three common roots is $p + q + r$

c. Show that the solutions of the equation

$$
10^{2/x} + 25^{1/x} = (4.25)(50^{1/x})
$$
 are $-\frac{1}{2}$ and $\frac{1}{2}$

85.*a*. If $a(p+q)^2 + 2bpq + c = 0$ and $a(p+r)^2 + 2bpr + c = 0$ then show that $qr = p^2 + \frac{p^2}{a}$ $qr = p^2 + \frac{c}{q}$

b. If α, β are the roots of the equation $ax^2 + bx + c = 0$ and $\alpha_1, -\beta$ those of $a_1x^2 + b_1x + c_1 = 0$ $a_1 x^2 + b_1 x + c_1 = 0$ Show that α, α_1

are the roots of
$$
\frac{x^2}{\left(\frac{b}{a}\right) + \left(\frac{b_1}{a_1}\right)} + x + \frac{1}{\left(\frac{b}{c}\right) + \left(\frac{b_1}{c_1}\right)} = 0
$$

86. Let $a, b, c \in \mathbb{R}$ and $ac \neq 0$. Show that zero is not a root of the equation $ax^2 + bx + c = 0$.

Let α and β be the roots of this equation, and let $\lambda = \frac{\alpha}{\beta}$.

Show that $ac(\lambda + 1)^2 = b^2 \lambda$.

Let $p, q, r \in \Re$ and $pr\neq 0$. Also, let γ and δ be the roots of the equation $px^2 + qx + r = 0$,

and let $\mu = \frac{\gamma}{\delta}$. Show that $\lambda = \mu$ or $\lambda = \frac{1}{\mu}$ $\lambda = \frac{1}{\mu}$ holds if and only if $acq^2 = prb^2$.

It is given that the roots of the equations $kx^2 - 3x + 2 = 0$ and $8x^2 + 6kx + 1 = 0$ are in the same ratio, where $k \in \mathcal{R}$. Find the value of k.

87. Polynomials $F(x)$, $G(x)$ and $H(x)$ of degree 4 in *x* are given as follows:

 $F(x) \equiv (x^2 - \alpha x + 1)(x^2 - \beta x + 1)$, where α and β are real constants; $G(x) \equiv 6x^4 - 35x^3 + 62x^2 - 35x + 6$, $H(x) \equiv x^4 + x^2 + 1$.

- (*i*) If both $F(x) = 0$ and $G(x) = 0$ have the same roots, show that the quadratic equation with α and β as its roots is $6x^2 - 35x + 50 = 0$. **Hence** find all the roots of the equation $G(x) = 0$.
- (*ii*) If $F(x) = H(x)$, find possible values of α and β , and show that the roots of the equation $H(x) = 0$ are not real.

88.Let $a, b, c \in \mathbb{R}$ such that $a \neq 0$ and $a + b + c \neq 0$, and let $f(x) = ax^2 + bx + c$. Show that 1 **is not** a root of the equation $f(x) = 0$. Let α and β be the roots of $f(x) = 0$.

Show that $(\alpha - 1)(\beta - 1) = \frac{1}{a} (a + b + c)$ *a* $(\alpha - 1)(\beta - 1) = \frac{1}{a}(a + b + c)$ and that the quadratic equation with $\frac{1}{\alpha - 1}$ 1 $\frac{1}{\alpha-1}$ and $\frac{1}{\beta-1}$ 1 $\overline{\beta-1}$ as the roots is given by $g(x) = 0$, where $g(x) = (a+b+c)x^2 + (2a+b)x + a$.

Now, let $a > 0$ and $a + b + c > 0$. Show that the minimum value m_1 of $f(x)$ is given by $m_1 = -\frac{a}{4a}$ *m* $1 - 4$ $=-\frac{\Delta}{4\pi}$, where

 $\Delta = b^2 - 4ac$. Let m_2 be the minimum value of $g(x)$. Deduce that $(a + b + c)m_2 = am_1$. **Hence**, show that $f(x) \ge 0$ for all $x \in \Re$ if and only if $g(x) \ge 0$ for all $x \in \Re$.

89. The roots of $x^2 + px + q = 0$. are α, β . Where p and q are real. If $\lambda = \alpha + \beta^2$ and $\mu = \beta + \alpha^2$, find the equation with the roots λ and μ . When α and β are imaginary, Prove that λ and μ are real only if $p = -1$. When this happens prove also that $\lambda = \mu = 1 - q$.

90.If $t + \frac{1}{t} = T + \frac{1}{T}$ *t* $t + \frac{1}{t} = T + \frac{1}{T}$, show that $t = T$ or $t = \frac{1}{T}$. The roots of the equation $px^2 + qx + r = 0$ are α, β . Let $\lambda = \frac{\alpha}{\beta}$. Show that *pr* $\lambda + \frac{1}{\lambda} = \frac{(q^2 - 2pr)}{pr}$. Hence, if the roots of $a_1x^2 + b_1x + c_1 = 0$ are α_1 , β_1 and the roots of $a_2x^2 + b_2x + c_2 = 0$ are $\alpha_2 \beta_2$, when it is given that $a_1b_2^2c_2 = a_2b_1^2c_2$ $a_1 b_2^2 c_2 = a_2 b_1^2 c_2$, show that 2 2 1 1 $1 \quad 1 \quad 1$ λ. λ. $\lambda_1 + \frac{1}{\lambda_1} = \lambda_2 + \frac{1}{\lambda_2}$. where $\lambda_1 = \frac{1}{\beta_1}$ and $\lambda_2 = \frac{1}{\beta_2}$ $2=\frac{u_2}{\rho}$ 1 $a_1 = \frac{a_1}{\rho}$ and β_2 $\lambda_2 = \frac{\alpha}{\alpha}$ β_1 $\lambda_1 = \frac{\alpha_1}{\beta_1}$ and $\lambda_2 = \frac{\alpha_2}{\beta_2}$. Also show that $\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2}$ or $\frac{\alpha_1}{\beta_1} = \frac{\beta_2}{\alpha_2}$ 2 1 1 2 2 1 1 α β β_1 α β_2 α β_1 $\frac{\alpha_1}{\beta} = \frac{\alpha_2}{\beta}$ or $\frac{\alpha_1}{\beta} = \frac{\beta_2}{\alpha}$.

91.Let $(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0$ Where $a, b, c \in \Re$. Show that the above equation contains the quadratic equation $3x^2 - 2(a+b+c)x + ab + bc + ca = 0$. Show also that the discriminant of this equation can be given as $2|(a-b)^2 + (b-c)^2 + (c-a)^2|$. Hence show that this equation has real coincident roots if and only if $a = b = c$.

92.Let $f(x) = ax^2 + bx + c$, where $a, b, c \in \Re$ with $a \ne 0$. Show that the roots of $f(x) = 0$ are real distinct, real coincident and imaginary according as $af\left(\frac{c}{2a}\right) \ge 0$ $\begin{cases} \leq \\ > \end{cases}$ $\left(\frac{-b}{a}\right)$ J $\left($ $$ *a* $af\left(\frac{-b}{2a}\right) \leq 0$. If the roots of $f(x) = 0$ are real distinct, prove that i.the roots of the equation $2a^2 x^2 + 2abx + b^2 - 2ac = 0$ are imaginary.

ii. the roots of the equation $a^2x^2 + (2ac - b^2)x + c^2 = 0$ are real.

93. Let $a, b \in \mathbb{R}$. Write down the discriminant of the equation $3x^2 - 2(a+b)x + ab = 0$ in terms of *a* and *b*, and **hence**, show that the roots of this equation are real.

Let α and β be these roots. Write down $\alpha + \beta$ and $\alpha\beta$ in terms of a and b.

Now, let $\beta = \alpha + 2$. Show that $a^2 - ab + b^2 = 9$ and **deduce** that $|a| \le \sqrt{12}$, and find *b* in terms of *a*.

94.Let $p \in R$ and $0 < p \le 1$. Show that 1 is not a root of the equation $p^2x^2 + 2x + p = 0$. Let α and β be the roots of this equation. Show that α and β are both real. Write down $\alpha + \beta$ and $\alpha\beta$ in terms of p, and show that

$$
\frac{1}{(\alpha - 1)} \cdot \frac{1}{(\beta - 1)} = \frac{p^2}{p^2 + p + 2}
$$

Show also that the quadratic equation whose roots are $\frac{\alpha}{\alpha-1}$ $\frac{\alpha}{\alpha-1}$ and $\frac{\gamma}{\beta-1}$ β $\frac{1}{\beta-1}$ is given by

.

 $(p^2 + p + 2)x^2 - 2(p + 1)x + p = 0$ and that both of these roots are positive. (2019)

95.Let $k > 1$. Show that the equation $x^2 - 2(k+1)x + (k-3)^2 = 0$ has real distinct roots. Let α and β be these roots. Write down $\alpha + \beta$ and $\alpha\beta$ in terms of *k*, and find the values of *k* such that both α and β are positive.

Now, let $1 < k < 3$. Find the quadratic equation whose roots are 1 $\frac{\overline{a}}{\alpha}$ and 1 \overline{B} , in terms of *k*. (2021)

96.Let $f(x) = x^2 + px + c$ and $g(x) = 2x^2 + qx + c$, where $p, q \in \mathbb{R}$ and $c > 0$. It is given that $f(x) = 0$ and $g(x) = 0$ have a common root α . Show that $\alpha = p - q$.

Find *c* in terms of *p* and *q*, and deduce that

(i) if $p > 0$, then $p < q < 2p$,

(ii) the discriminant of $f(x) = 0$ is $(3p - 2q)^2$.

Let β and γ be the other roots of $f(x) = 0$ and $g(x) = 0$ respectively. Show that $\beta = 2\gamma$.

Also, show that the quadratic equation whose roots are β and γ is given by $2x^2 + 3(2p - q)x + (2p - q)^2 = 0.2020$

97. Let $k \in \mathbb{R} - \{-3\}$.

Find the set of values of real constant k, so that the roots of the equation $(k+3)x^2 - 2(k+1)x + 2k - 1 = 0$ are real. Also find the set of values of *k*, for which the roots of the equation above are real and opposite in signs. If the roots of this equation are α and β , find the equation, in terms of k. whose roots are $(\alpha - 1)$ and $(\beta - 1)$.

98. Let the roots of the equation $ax^2 + bx + c = 0$ are α and β . Find in terms of a, b and c the condition required for both of these roots are positive.

Let $f(x) = 3x^2 - (p-4)x - (2p+1)$. When the roots of the equation $f(x) = 0$ are real, show that p does not take any value between -14 and -2. Also find the value of *p* so that the roots of $f(x) = 0$ are equal. Further, find the quadratic equation whose roots are greater than by 2 of the roots of $f(x) = 0$.

99. The roots of the equation $10x^2 + 4x + 1 = 2\lambda x(2 - x)$ are α and β . Where λ is a real constant.

i.Find the equation with the roots $\frac{\alpha^2}{a}$ and $\frac{\beta^2}{a}$ $\overline{\beta}$ and $\overline{\alpha}$.

ii. Find the range of the values of λ so that α and β are real. Deduce the values of λ , for $\alpha = \beta$.

100. Let the roots of the equation $ax^2 + bx + c = 0$ are α and β , where $a \neq 0$ and $\alpha > \beta$. Write down values of $\alpha + \beta$ and $\alpha\beta$. Show that $\alpha - \beta = \frac{\sqrt{2}}{a}$ $\alpha - \beta =$ $\overline{\triangle}$. where $\triangle = b^2 - 4ac$. Show that the roots of the equation $(k^2 - 2k)x^2 + 2(k^2 + 2)x + k^2 + 2k + 4 = 0$ are real. where $k \neq 0, 2$ and $k \in \mathbb{R}$.

101. Let $f(x) = x^2 + (3\lambda - 1)x + 2\lambda^2 - \lambda$.

i. Show that for all $\lambda \in \mathbb{R}$, $f(x) = 0$ has real roots.

ii. Find in terms of λ , the coordinates of the vertex of the graph of $y = f(x)$. Hence, when $\lambda = 1$ sketch the graph of $y = f(x)$.

iii. Let $\lambda = 2$. If $g(x) = f(1-x)$ sketch the graph of $y = g(x)$

102.*a*. The equation $\frac{1}{2x} = \frac{1}{(x+c)} + \frac{1}{(x-c)}$ *p a b* $x(x+c)$ $(x-c)$ $=\frac{a}{(x+c)} + \frac{b}{(x-c)}$ has equal roots. If the corresponding values of *p* are p_1 and p_2 ($p_1 > p_2$) Show that $p_1 - p_2 = 4\sqrt{ab}$.

b. Sketch the graphs of $y = x^2 - x - 2$ and $y = 2x - 1$ in the same diagram. Using the graph deduce that only one root of the equation $x^2 - x - 2 - (2x - 1) = 0$ lies between the roots of $x^2 - x - 2 = 0$.

103. The roots of the equation $x^2 + 2kx + k + 2 = 0$ are α and β . Where k is a constant. Write down $\alpha + \beta$ and $\alpha\beta$ in terms of *k*. Show that $(\alpha - \beta)^2 = 4(k^2 - k - 2)$.

Hence show that there exist two equations as above so that the difference of the roots is 4 and find their equations.

when it is given $k \neq -2$, Show that the quadratic equation $\frac{\alpha^2}{a}$ and $\frac{\beta^2}{a}$ $\frac{\pi}{\beta}$ and $\frac{\pi}{\alpha}$ as roots is

 $(k+2)x^{2} + 2k(4k^{2} - 3k - 6)x + (k+2)^{2} = 0$ and hence find the equation with the roots $1+\frac{\alpha^2}{2}$ and $1+\frac{\beta^2}{2}$ β and α $+\frac{a}{a}$ and $1+\frac{b}{a}$.

104. The roots of the equation $x^2 - 2x + 3 = 0$ are α and β . Write down $\alpha + \beta$ and $\alpha\beta$. Hence

i. Show that $\alpha^2 + \beta^2 = -2$

ii.Find the value of $\alpha^3 + \beta^3$

iii. Show that $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2$

iv. Find the quadratic equation with the roots $\alpha^3 - \beta$ and $\beta^3 - \alpha$.

105.*i*. Find the set of values of p, so that for all real values of x, the expression $(p-3)x^2 - 4px + p-3$ to be negative. *ii.*Let $g(x) = 3x^2 - 2\lambda x + 3$. Find the value of λ for $g(x)$ to be a perfect square.

iii.Let $f(x) = x^2 + (k-2)x - 2k$. Where *k* is a real constant. Show that , *f*(*x*) has factors for any value of *k*. Let $g(x) = f(x-k) - 2x$. Show that $g(x)$ has real roots. If $(x-7)$ is a factor of $g(x)$, find the value of *k* and sketch the graph of $y = g(x)$.

106. The roots of the equation $x^2 + ax + b = 0$ are α, β .

Find the roots of the following equations in terms of α and β .

$$
i. bx2 - (a2 - 2b)x + b = 0
$$

$$
ii. b2x2 - (a2 - 2b)x + 1 = 0
$$

$$
iii. bx2 - a2x + a2 = 0
$$

107.*a*.If and α , β are the roots of the equation, $ax^2 + bx + c = 0$ find the value of $(\alpha - \beta)^2$ in terms of *a*, *b* and *c*. Obtain the roots of the equation $(c - b + a)x^2 + (b - 2a)x + a = 0$ in terms of α, β .

bi. If there is a common root for the equations $ax^2 + a^2x + 1 = 0$ and $bx^2 + b^2x + 1 = 0$, show that the quadratic equation $abx^2 + x + a^2b^2 = 0$ is satisfied by the other roots of them.

ii.Show that for real *x*, there is no real value of the expression $2^2 + 2x - 1$ $2x - 1$ $x^2 + 2x$ *x* $+2x \frac{1}{x-1}$ between 1 and 2.

108. Let $f(x)$ be a quadratic function in the form $f(x) = ax^2 + bx + c$. Here *a*, *b*, *c* are real constants and $a \ne 0$.

Show that
$$
\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} + \frac{f(x)}{a}.
$$

Hence deduce that if the equation $ax^2 + bx + c = 0$ has real roots $b^2 - 4ac \ge 0$. Show that the quadratic equation $qx^2 - 2p\sqrt{px} + p^2 = 0$ has real roots **if and only if** $p \geq q$. Here $p, q \in \mathbb{R}, p \neq 0, q \neq 0$.

109.Let $f(x) = (3 - k)x^2 - kx + 1$ for $0 < k < 3$,

i. Write down the discriminent of $f(x) = 0$ in terms of *k*. By this find the range of values of *k* for the roots of $f(x) = 0$ to be real.

ii.Let the roots of $f(x) = 0$ are α, β . Write $\alpha + \beta$ and $\alpha\beta$ in terms of *k*. Show that if α and β are real then both α and β are positive. Show that quadratic equation with $\alpha + 2$ and $\beta + 2$ as roots is

$$
(3-k)x^2 - 3(4-k)x + 13 - 2k = 0.
$$

110. Let the roots of the equation $x^2 - (2k+3)x + k(k+5) + 2 = 0$ be $\alpha + 2, \beta + 2$ for $k \in \mathbb{R}$.

i. Find the quadratic equation, in terms of *k*, whose roots are α and β .

ii. Find the range of values of *k* for which α and β are real.

iii. Find the range of values of *k* for which α and β are both real and negative.