STRUCTURE AND BONDING TUTORIAL 3

1.

Fill the following table based on the information for N atoms attached to O and H in the molecule.

	N bound to O	N bound to H
Valance electrons around the central atom		
Number of VSEPR pairs		
Number of lone pairs		
Shape		

2. Use VSEPR theory to deduce the shapes around the following atoms indicated by 1, 2, 3.

 3.
 C1
 N2
 N3

 Valance electrons around the central atom

 Number of VSEPR pairs

 Number of lone pairs

 Shape

(iii) Based on the Lewis dot-dash structure given below, state the following regarding the C, N and O atoms given in the table.

- I. VSEPR pairs around the atom
- III. shape around the atom

II. electron pair geometry around the atom IV. hybridization of the atom

..⊖

The atoms are numbered as follows.

 $F = O^{1} = N^{2} = C^{3} = N^{4} = Cl$

		O^1	N ²	C ³	N ⁴
I.	VSEPR pairs				
H.	electron pair geometry				
III.	shape				
IV.	hybridization				

Complete the given table based on the Lewis dot-dash structure and its labelled skeleton given below.

ö	0 :		ò		
;ĊI—N	i=n̈—ö—c≡n:	C	$-N^{1}-N^{2}-$	$-0^{3}-C^{4}-$	N
••• •		N ¹	N ²	O ³	C ⁴
VSEPR pairs	around the atom				
electron pair g	geometry around the ator	n			
shape around	the atom				
hybridization	of the atom				
5. What is the spe	cies having the same shap	e as PO_4^{3-} of the	following?		
a. POCl ₃	b. SiCl ₄ c. CH ₄	d. ICl4 ⁻	e. SO4 ²⁻		
6. Noble gas Xe f	forms XeF4 a covalent com	pound. Determin	e the most suit	able structure	e for the compound
a. Tetrahe	dral b. Square plan	ner c. Octah	edral d. Trig	onal pyramic	e. sea saw
7. Which of the fo	ollowing is the most suitab	le shape of the C	lO ₃ - anion?		
a. Tetrahe	dral b. Planer	c. T-sha	ped d. Trig	onal pyramic	d e. Trigonal planer
8. The shape of C	lBrFPO is				
a. Tetrahe	dral b. Planer	c. Trigo	nal by pyramid	d. O	ctahedral
e. none of	the above				
9. Which species	out of the following shows	s a different shap	e than that of S	O_3^{2-} ?	
a. ClO ₃ -	b. PCl ₃	c. SOCI	2 d. H ₃ O ⁺	e. NO	3-
10. Which pair ou	t of the following has the	same shape?			
a. NH3	b.H ₃ O ⁺	c. ClF3	d. BCl ₃	e.PCl	3
i) A&C ii)	D&C ii) A,	B&E	iv) C, D&E	N	v) B&C
11. What is the el	ectron pair geometry of Sb	around SbF5 ²⁻			
a. Octahedral b.	square pyramid c. Trig	onal bipyramid	d. square pla	ner e. pen	tagonal pyramid
12. Which one of	the following species has	a different shape	than others?		
a. SO4 ²⁻	b. S ₂ O ₃ ²⁻	c. PCl4 ⁺	Ċ	l. NH4 ⁺	e. SF4
13. Which one of	the following contain spec	cies with a differe	ent shape?		
a. CO ₂ , BeCl ₂	b. PO4 ³⁻ , S ₂ O ₃ ²⁻	c. NO ₂ ⁻ , SO ₃	d. HOB	H_2S	e. NCl ₃ , BCl ₃

VAJIRA SENEVIRATNE @ 2026 ADVANCED LEVEL CHEMISTRY

4.

14. Which of the following h	as the same sh	ape as ICl ₂ -?				
a. SO ₂	b. O ₃	c. BeCl ₂	d. H ₂ S	e. HOCl		
15. Which one of the followi	ng has a signif	ficant difference	e to the shape o	of SO4 ²⁻ ion?		
a. NH4 ⁺	b. BCl4 ⁻	c. SF ₄	d. $S_2O_3^{2-}$	e. CH4		
16. What is the shape of CIF4	⁺ out of the fo	llowing?				
a. Tetrahedral b. Sea	ı saw c. Pyr	amidal	d. Trigonal p	yramid e. Oct	ahedral	
17. What is shape of BrF ₃ ou	t of the follow	ing?				
a. Trigonal bipyramid	b. Oct	tahedral	c. Square pyr	amidal	d. Tetrahedral	
e. None of the above						
18. Which out of the following	ng molecule co	ontain 4 atoms o	on the same pla	ine?		
a. SF ₄	b. BCl ₃	c. PCl ₃	d. NH ₃	e. SiH4		
19. Shape and electron pair g	eometry of Cl	F4O ⁻ respective	ely are			
a. Trigonal bipyramid	lal & square py	yramidal				
b. Square pyramidal &	& octahedral					
c. Trigonal pyramid &	& Octahedral					
d. square pyramid & '	Trigonal bipyr	amidal				
e. Octahedral and squ	are pyramidal					
20. Which statement is true a	bout NO ₂ +?					
a. This is linear in sha	ipe					
b. There is a sigma bond						
c. It has a bent shape						
d. The valance shell o	of N in NO ₂ ⁺ co	ontain less than	8 electrons			
21. The electron pair geometry	ry and the shap	pe of the molect	ule of XeO ₂ F ₂	respectively are	2	
a. Trigonal bipyramid	l and seesaw					
b. Trigonal bipyramic	l and tetrahedr	al				
c. Tetrahedral and see	esaw					
d. seesaw and trigona	l bipyramid					
e. square planer and to	etrahedral					
22. Which molecule/ molecu	les out of the f	following have a	all the atoms of	n the same plan	e?	

		A. BF3	B. INCI3	C. ICI3	
1. Only A	2. Only B	3. Only C	4. Only A &	В	5. Only A & C

	First Statement	Second statement
1	It is possible to identify polar covalent bond	H-Cl has a polar covalent bond
	among two similar atoms.	
2	Nonpolar covalent bonds are formed only	π bonds are not formed when nonpolar covalent
	among two of the same atoms	bonds are formed.
3	The bond in N ₂ is a nonpolar covalent bond	There are 2 orbital overlaps in a molecule of N_2
4	There should be at least one lone pair to form	A dative bond is formed only when the receptor
	a dative bond	atom contains a lone pair.
5	Formation of a dative bond is also considered	The species which donated a lone pair is
	as an acid base reaction	considered as a Lewis acid.
6	The molecular orbital of a dative bond is	A dative bond is formed only between an atom
	exactly like the molecular orbital of a σ bond	with an empty orbital and an atom with a lone pair.
7	BF ₃ acts as a Lewis base	The octet in B of BF ₃ is not completed
8	NH4Cl contains a dative bond	The dative bond in NH4Cl can be separately
		identified.
9	A dative bond can form between two	The dative bond in H ₃ O ⁺ can be separately
	molecules	identified.
10	There is a dative bond in BF ₃	BF ₄ - contains a dative bond formed by
		intermolecular electron donation
11	The shape around Al in Al ₂ Cl ₆ is tetrahedral	It is possible to identify + and - ions in the
		structure of Al ₂ Cl ₆
12	Dative bonds are formed between species that	Cu ²⁺ can form complexes formed by dative bonds
	can form coordination bonds	
13	Complexes formed by Co ²⁺ with water is	All complexes formed by d block elements are
	octahedral in shape	octahedral
14	Though PCl ₅ can form NCl ₅ cannot exist	Atomic radius of P is greater than N
15	Covalent bonds and dative bonds are the same	Dative bonds are formed when the
		electronegativity difference among atoms is larger
		than 2.1
16	One bond in NH ₄ ⁺ is different than the other	It is possible to identify one N-H bond separately
	N-H bonds.	from other N-H bonds in the NH4 ⁺ ion.

Consider the following statements and state whether they are correct/ incorrect

UNIT 2: STRUCTURE AND BONDING- TUTORIAL 4

1. Determine whether the following compounds are polar or non-polar.

PF ₅	CS ₂	BrO ₃ -
NH4 ⁺	SCl ₄	BrF ₅
BF ₃	SCl ₆	PH ₃
NF ₃	SO ₄ ²⁻	CO3 ²⁻
SiCl ₄	ClO ₃ -	CH ₂ O
NO ₃ -	O ₃	CCl ₄
AlH ₃	SO ₂	SO3
СО	CHCl ₃	BrF ₃
H ₂ S	I ₃ -	H_3O^+

2. Draw Lewis structures, name shapes and indicate polar or non-polar for the following molecules:

a. CH4	b. NCl3	c. CCl ₂ F ₂	d. CF ₂ H ₂	e. CH ₂ O	f. CHN	g. PI3
h. N2O	i. SO ₂	j. CS2	k. CO	1. H2O	m. COF ₂	n. N2
o. O2	p. H2	q. Cl ₂	r. HF	s. O3	t. NI3	

Carbon has 4 valence electrons. Add these electrons to the atomic and molecular orbitals given below. This hybridization gives ______ geometry. With this hybridization, C will form four equivalent σ bonds in the molecule of CH₄.

- (I) Draw a similar energy diagram for sp^3 hybridized oxygen in H₂O.
- (II) How many σ bonds are formed? How are the other sp^3 orbitals used?
- (III) Do the same exercise for sp^3 hybridized nitrogen in NH₃.
- 4. In some Lewis structures, there are only **three** equivalent bonds formed. To create three equivalent hybridized orbitals, mix **three** atomic orbitals. Draw the energy diagram for hybridization in BF₃.

The hybridized orbitals will form $_____ \sigma$ bond(s). The unhybridized orbital will form $_____ \pi$ bond(s). There will be $______$ lone pair(s). This hybridization gives **trigonal planar** geometry.

In **linear** molecules, like CO_2 , the central atom has only **two** equivalent bonding orbitals. Draw the energy levels and name the orbitals formed in this hybridization.

Fill in the electrons for **carbon** and determine the number and typed of bonds formed.

In CO_2 , determine the hybridization of the **oxygen** atoms. Complete the energy diagram for the oxygens. Draw the structure of CO_2 .

5. Fill in the chart below and then complete the Lewis structures for the molecules shown below and fill in those charts.

a.

atom #	bond angle	hybridization
1		
2		
3		

b.

c.

 σ bonds ____

 π bonds _____

atom #	bond angle	hybridization
1		
2		
3		

6. The molecule shown to the left, below is riboflavin (vitamin B2). Answer the following questions about its structure.

- d) How many σ bonds are there in total?
- e) How many π bonds are there in total?

1. a) how many carbons are sp^3 hybridized?

*sp*² hybridized? *sp* hybridized?

- 2. b) How many nitrogens are sp^3 hybridized? sp^2 hybridized?
- 3. c) How many oxygens are sp^3 hybridized?

 sp^2 hybridized?

sp hybridized?

sp hybridized?

- 7. The acetate ion, $C_2H_3O_2^-$, has both oxygens bonded to the same carbon.
 - a) Draw the Lewis structure.
 - b) Label the hybridization around each carbon.
 - c) Label the hybridization of each oxygen.
 - d) How many σ and π bonds are present?
 - e) Which atom carries the formal negative charge?

8. For the compound below, determine the hybridization, bond angles and lone pair electrons at each numbered atom.

10. Determine the Hybridization around all atoms.

	CH4	Cl ₂	NF3	CH ₂ CH ₂	CO ₂	CH3CH2CO2H	CHCH
--	-----	-----------------	-----	---------------------------------	-----------------	------------	------

11. The molecule shown below is Griseofulvin, an antifungal compound.

a.	Give the hybridization of carbons 1, 2, 3 and oxygen 4.	C1:	C2:	C3:	04:

- b. What is the geometry at each of these atoms? C1: C2: C3: O4:
- c. Fill in all lone pair electrons and H's on the structure assuming neutral charge.

12. For the molecule shown give the information corresponding to each letter as indicated below.

- a. Give the hybridization of atoms indicated by arrows.
- b. Give three bond angles indicated in the structure.
- 13. Indicate the hybridization of each atom in the following structures.
 - 1. CH₃CH₂CH₂CH(CH₃)₂
 - 2. CH₃CH₂CHBrCH₂C(CH₃)₃

- 14. What hybridization do you predict for the carbonatom in CH_3^+ , CH_3^- , and :CH₂? (b) What do you predict for the H-C-H bond angle for each of these species? What do you predict for the molecular geometry.
- 15. Provide the ground state electron configuration and the number of valence electrons for carbon and Silicon. Describe how these two atoms are similar. (b)Which bond do you think is stronger, C-C bond or the Si-Si bond, explain your answer.
- 16. Draw the Lewis structures for SiH₄, PH₃ and H₂S. Provide the electronic geometry and the molecular geometry for each as predicted by VSEPR theory.
- 17. Consider the Lewis structure for PH₃.
 - (a) What value do you predict for the H-P-H bond?
 - (b) Is the P-H bond being a stronger bond or weaker bond than an N-H bond in NH₃? Explain.
 - (c)Is hybridization necessary to explain the trivalent nature of phosphorus? Explain.

(d) If it does undergo hybridization? What hybridization state would PH₃ have and why would it undergo hybridization?

- 18. Draw the organic molecules which contain the following types of bonds
 - a. $C-sp^3 O-sp^3$
 - b. $N-sp^2-C-sp^2$
 - c. $C-sp^2-C-sp^2$
 - d. N-*sp*²-C-*sp*² (No π bond between N and C)
- 19. Why is an *sp* hybridized C-H bond is can break with Na than an sp^2 hybridized C-H bond?
- 20. Are the hydrogen atoms in the molecule H₂C=C=C=CH₂ in the same plane or in planes perpendicular to each other? Explain using the hybridization of each carbon atom.

VAJIRA SENEVIRATNE @ 2026 THEORY

Answer	First Statement	Second Statement		
(1)	True	True, and correctly explains the first statement		
(2)	True	True, but does not explain the first statement correctly		
(3)	True	False		
(4)	False	True		
(5)	False	False		

	1 st statement	2 nd statement		
8	XeF ₂ has a zero-dipole moment	All linear molecules are non-polar		
9	Dipole moment is a vector	Dipole moment has a magnitude and a direction		
10	CO ₂ is a non-polar molecule	CO ₂ contains polar bonds		
11	The dipole moment increases whenever the electronegativity difference increases	The dipole moment does not depend on the length of the molecule.		
12	If a molecule with the common formula AB ₃ is polar, then its' shape is trigonal planer	All molecules which are trigonal planer in shape are non-polar		
13	Dipole moment of NF ₃ is larger than that of	The electronegativity difference of N-F bond is much		
	NH ₃	higher than that of the N-H bond.		
14	Dipole moment of a cis isomer is always higher than a trans isomer	Dipole moment of a trans isomer is always zero		
15	A molecule having a general formula of	$\Delta \mathbf{Y}_{t}$ can take the shapes of tetrahedral square planer		
15	A molecule having a general formula of	AA4 can take the shapes of tenancular, square planer,		
	always tetrahedral.	see saw.		
16	Dipole moment of the CO ₂ molecule is zero.	Electron pair geometry of CO ₂ is linear.		
17	A molecule with a general formula AB ₂	If a molecule having a general formula of AB ₂ with an		
	having a dipole moment is always bent	electron geometry trigonal planer or tetrahedral it is		
	shaped.	always polar.		

22.

Complete the given table based on the Lewis dot-dash structure and its labelled skeleton given below.

;ö; ¦ ;ċi—N=n-c≡N;	$\begin{array}{c} O \\ \downarrow \\ Cl \longrightarrow N^1 \longrightarrow N^2 \longrightarrow O^3 \longrightarrow C^4 \longrightarrow N \end{array}$				
Ű.	N ¹	N ²	O ³	C ⁴	
VSEPR pairs around the atom					
electron pair geometry around the atom					
shape around the atom					
hybridization of the atom					