AL/2025/10/E/I/II

සියලුම හිමිකම් ඇවිරිනි /All Rights Reserved.

- 1. Given that $f(x) = x^2 2(1+\lambda)x + 4\lambda + 3$, where $\lambda \in \Re$.
 - *i*) Show for the roots of f(x) = 0 are in opposite signs that $\lambda < \frac{-3}{4}$.
 - *ii*) Show that for all real values of λ the roots of the equation f(x) = 3 are real.
 - *iii*) If λ_1 and λ_2 are two values of λ so that the equation f(x) = 0 has coincident roots,
 - Show that $|\lambda_1 \lambda_2| = 2\sqrt{3}$.
 - *iv*) Find the values a and b interms of λ , so that $f(x) = (x-a)^2 + b$, Find the value of λ such that f(x) has a

minimum at x = -2. Find also the minimum of f(x) at this value of λ .

2.*a*. Show that the remainder when the polynomial f(x) is divided by (x-a) is f(a). Show that the function $f(x) = x^4 - 2x^2 + 6$ has no a factor in the form (x - k). Where k is a real constant. Let $g(x) = 3f(x) + \lambda x^2 + \mu x$. If (x - 1) and (x - 2) are factors of g(x), find the values of the constants λ and μ . Hence factorise g(x). Also find the range of x so that the function g(x) is positive.

b. Solve the equation $2\log_x^a + \log_{ax}^a + 3\log_{a^2x}^a = 0$, where a > 0, and $a \neq 1$

3. a) Let $y = e^{\sin x}$, Show that

i)
$$\frac{dy}{dx} = y \cos x$$
. Hence show that $y \frac{d^2 y}{dx^2} + y^2 \sin x - \left[\frac{dy}{dx}\right]^2 = 0$

b) Let
$$f(x) = \frac{2x^2 - 4x}{(x - 3)(x + 1)}$$
; for $x \neq 3, -1$

Show that $f'(x) = \frac{-12(x-1)}{(x-3)^2 (x+1)^2}$

sketch the graph of the function y = f(x) indicating the turning points and asymptotes.

AL/2025/10/E/I/II

4. A narrow smooth tube *ABCD* is bent into the form indicated in the figure below. The portion *AB* of the tube is straight. The portion *BCD* is of semi-circular shape with radius *a*, centre O and the diameter *BD* perpendicular to *AB*. The tube is fixed in a vertical plane with *AB* horizontal and uppermost. In side the tube there is a particle *P* of maass *m* and a particle *Q* of mass 3*m* connected by a light inextensible $\frac{A}{Q} = \frac{P}{Q} = \frac{B}{Q}$ string of length $l\left(>\frac{\pi a}{2}\right)$. Initially, the string is taut, lying *AB*, with the particle *Q* at the point *B*. The particle *Q* is slightly displaced from this position, and in time *t*, radius *OQ* turns through an acute angle θ . Applying the principle of conservation of energy, show that $\left(\frac{d\theta}{dt}\right)^2 = \frac{3g}{2a}(1-\cos\theta)$.

Hence, or otherwise, show that the acceleration of the particle *P* is $\frac{3g}{4}\sin\theta$. Find the reaction from the tube on the particle *Q* and the tention in the string, at time *t*.

5.A smooth hemispherical bowl of radius *a* is fixed so that its rim is horizontal and uppermost. A uniform rod *AB* of length 2*l*, and weight 2*w* is in equilibrium with end *A* in contact with the inner surface and end *B* projecting beyond the rim of the bowl with a weight *w* attached there. If the inclination of the rod to the horizontal is θ . Show that $2l \cos \theta = 3a \cos 2\theta$. Find $\cos \theta$ in terms of *l* and *a*, and show that the length of the part of the rod

projecting beyond the rim is $\frac{5l - \sqrt{l^2 + 18a^2}}{3}$.

6. The points $A \equiv (a,0)$, $B \equiv (a,a)$, $C \equiv (0,a)$ where a > 0, are in the OXY coordinate plane.

Forces of magnitudes 1,2,3,4,9 $\sqrt{2}$ and $\sqrt{2}$ act along the sides \overrightarrow{OA} , \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CO} , \overrightarrow{OB} and \overrightarrow{AC} respectively. Find the magnitude and the direction of the resultant force.

If this resultant force cuts the *OX* axis at *N*, find *ON*. Show that the equation of the line of action of the resultant force is 3y - 4x + 3a = 0

A couple on the plane of the forces is now added so that the resultant force passes through the origin.

Find the magnitude and the sense of this couple.