ORGANIC CHEMISTRY: ISOMERS

1. For each question below, draw all of the isomers required. a. Draw all the structural isomers of C_4H_9F . (Hint: 4 isomers)
b. Draw all the structural isomers of C_7H_{16} with a carbon chain of 5 carbon atoms (i.e., the carbon backbone can not contain 7, 6, or 4 carbon atoms.) (Hint: 5 isomers)
c. Draw all the structural isomers of $C_4H_{10}O$. (Hint: 7 isomers)
d. Draw all the structural isomers of C ₄ H ₈ Cl ₂ . (Hint: 9 isomers)
e. Draw all the structural, geometric, and cyclic isomers of C ₄ H ₈ . (Hint: 6 isomers)
f. Draw all the structural isomers of C ₆ H ₃ F ₂ Cl that include a benzene ring. (Hint: 6 isomers)
2. In question #1, parts "a"-"d", identify all carbon atoms within each isomer that is a chiral center. Denote the carbon atom that is a chiral center with a *.
 3. Using the formula C₃O₂H₆ draw the following isomers. a. Draw two isomers that contain an ester. b. A molecule that contains a carboxylic acid. c. A molecule that contains two alcohols but no alkenes. d. A molecule that contains an ether and an alcohol.
3. Draw all the possible constitutional isomers of the following molecular formulas. The correct number of isomers is given in parenthesis.
1. C ₃ H ₈ O (3)
2. C ₃ H ₅ Cl ₃ (5)
3. Draw all the ketones that have formula C_4H_6O . (3)
4. Draw all the amines where the nitrogen is attached to one carbon with the formula $C_5H_{13}N.\ (4)$

B. What is the relationship between each of the following pairs of structures? Are they totally *different* molecules (i.e., which do not have the same molecular formula), are they *constitutional isomers*, or are two drawings of the *same* compound?

H ₂ CH ₃ CH ₃
CH_3 H_3C H_2 H_2 C C C C C C
H ₂
H ₃ C—CH ₂ CH ₃
CH ₃ -CHClBr
H ₃ C—CH H
Br CH ₃
Br — CH C — CH_2Br H_2C — CH_3

GEOMETRIC ISOMERS

1. Write and label the cis-trans isomers of the following: (use bow-tie structures)

a) 1,2-dichloroe	ethene	3	tı	rans	·	
b) 2-butene	cis		trans			
c) 2,3- dibromo	o-2-penten	ecis		tra	ans	
d) 3-hexene	cis		trans			
		cis		trans		

2. Give the name of each of the following bow-tie structures: (don't forget 'trans' or 'cis')

e) 1,2-difluoro-1-butene

d)
$$CH_3$$
 $C=C$ NO_2 NO_2

OPTICAL ISOMERS

1.

2-aminopropanoic acid (alanine) has two enantiomers (optical isomers) because it has a chiral molecule containing an asymmetric carbon atom. One enantiomer is a non-superimposable mirror image of the other.

The two enantiomers rotate the plane of polarisation of plane polarised light in opposite directions, but 2-aminopropanoic acid can also be found as a racemic mixture which has no effect on the plane of polarisation.

2-aminopropanoic acid has the structure:

- a) Draw the structures of the two enantiomers. Use your diagram to explain what is meant by the term non-superimposable mirror image.
- b) Explain what is meant by a chiral molecule and say how you would recognise an asymmetric carbon atom.
- c) Why doesn't a racemic mixture have any effect on the plane of polarisation of plane polarised light?
- 2. Some, but not all, of the following molecules have optical isomers. For those that do, draw the structures for the two isomers.

- 3. Draw the structure of the smallest alkane (with a general molecular formula of C_nH_{2n+2}) which has optical isomers.
- The structure of the hormone testosterone is:

Sketch this molecule and then draw a circle around all the asymmetric carbon atoms that you can find.