VECTORS

1). *ABCDEF* is a regular hexagon. If $\overrightarrow{AB} = \underline{a}$ and $\overrightarrow{BC} = \underline{b}$, find the vectors $\overrightarrow{AC}, \overrightarrow{AD}, \overrightarrow{AF}, \overrightarrow{AE}, \overrightarrow{CE}$ in terms of \underline{a} and \underline{b} .

2).*ABCD* is a parallelogram. Show that

i. $\overrightarrow{AC} + \overrightarrow{DB} = 2\overrightarrow{DC}$ ii. $\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$

3). ABCDE is a pentagon. Show that $\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{ED} + \overrightarrow{DC} = 2\overrightarrow{AC}$.

4). ABCD is a parallelogram. The mid - points of the sides AD and CD are E and F respectively. By expressing the

vectors \overrightarrow{BE} and \overrightarrow{BF} in \overrightarrow{BA} and \overrightarrow{BC} vectors show that $\overrightarrow{BE} + \overrightarrow{BF} = \frac{3}{2} \overrightarrow{BD}$.

5).*ABCD* is a quadrilateral. Show that $\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$.

6). The mid - points of the sides AB and AC of the triangle ABC are D and E respectively. Show that

$$\overrightarrow{BE} + \overrightarrow{DC} = \frac{3}{2} \overrightarrow{BC}.$$

7). The mid - points of the sides of the triangle ABC are D, E, and F. Show that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF}$.

8). The mid - points of the sides of the quadrilateral *ABCD* are *P*, *Q*, *R*, *S*. Prove that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} + \overrightarrow{OS}$.

- 9). The mid points of the sides AB and BC of the triangle ABC are E and D respectively. Prove that $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = 4 \overrightarrow{ED}$.
- 10).Relative to a vector origon *O*, the position vectors of the points *A* and *B* are \underline{a} and \underline{b} . The points *P* and *Q* are on *OA* and *OB* such that OP: PA = 2:1 and OQ: QB = 1:2.

1. Find the following vectors in terms of \underline{a} and \underline{b} .

 $i. \overrightarrow{OP}$ $ii. \overrightarrow{OQ}$ $iii. \overrightarrow{PQ}$

2. The point *R* is such that OR: AR = 2:1. Find \overrightarrow{RB} .

3. Show that RB and PQ are parallel, find the ratio RB : PQ.

4. The line QP is produced to S such that QP = PS. Find the vectors \overrightarrow{PS} and \overrightarrow{AS} in terms of \underline{a} and \underline{b} . 5. Show that the points B, A and S are collinear.

11). The points *O*, *A*, and *B* are not collinear. Let $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$. C is a point such that $\overrightarrow{OC} = \underline{a} + \underline{b}$. *P* is the mid -

point of *BC*. Show that $\overrightarrow{OP} = \frac{1}{2}(\underline{a} + 2\underline{b})$.

12)*i*. The centroid of the triangle *ABC* is *G*. *O* is any point. Prove that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$.

ii.ABCDEF is a regular hexagon. Prove that $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3\overrightarrow{AD}$.

13). Given that $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{CA} = \underline{b}$ and $\overrightarrow{CD} = 2\underline{a}$. Point E is on *CB* such that $\overrightarrow{CE} = 2\overrightarrow{EB}$.

i.Find the vectors represented by \overrightarrow{CB} , \overrightarrow{EB} , \overrightarrow{DB} , \overrightarrow{AE} , \overrightarrow{ED} .

ANANDA ILLANGAKOON

ii. Show that the points *A*, *E*, *D* are collinear.

- 14).*a*).*ABCDEF* is a regular hexagon. Prove that $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6\overrightarrow{AG}$. Where *G* is the centroid of the hexagon.
 - *b*). *ABCDEF* is a regular hexagon. Let $\overrightarrow{AB} = \underline{a}$ and $\overrightarrow{BC} = \underline{b}$. Find the vectors determined by the other four sides taken in order. Also express the vecotors

 \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AF} , \overrightarrow{AE} , \overrightarrow{CE} in terms of \underline{a} and \underline{b} .

c) ABCDEF is a regular hexagon. $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{EA} + \overrightarrow{FA} = 4\overrightarrow{AB}$

15).Prove by vectorial methods, that the straight line joining the middle points of two sides of a triangle is parallel to the third side and is half of its length.

- 16).*a*).Prove that the straight line joining the middle points of two non-parallel sides of a trapezium is parallel to the parallel sides and half of their sum.
 - *b*).Prove that the straight line joining the middle points of the diagonals of a trapezium is parallel to parallel sides and half of their difference.
- 17).*a*). Prove that the quadrilateral formed by joining the mid-points of the sides of any quadrilateral taken in order is a parallelogram.

b).Prove that the lines joining the mid-points of opposite sides of a quadrilateral bisect each other.

18). From an origin O the points A, B, C have position vectors $\underline{a}, \underline{b}, 2\underline{b}$ respectively. The points O, A, B are not

collinear. The mid point of AB is M and the points of trisection of AC nearer to A is T. Draw a diagram to show

O,A,B,C,M,T. Find, interms of \underline{a} and \underline{b} , the position vectors of M and T. Use your results to prove that O,M, T are

collinear, and find the ratio in which M divides OT.

- 19)*i*. The position vectors of the three points *A*, *B*, *C* are \underline{a} , \underline{b} and $3\underline{a}$, $-2\underline{b}$ respectively. Find \overrightarrow{AB} and \overrightarrow{AC} in terms of \underline{a} and \underline{b} . Hence show that *A*, *B*, *C* are collinear points.
 - *ii*. The position vectors of the points A, B, C are $(2\underline{a} + \underline{b})$, $(\underline{a} + 3\underline{b})$ and $(4\underline{a} \underline{m}\underline{b})$ respectively. If the three points A, B, C are collinear find the value of m.

20). In the triangle *OAB*, $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$. The points *F* and *E* lie on *OA* and *OB* respectively such that $\frac{OF}{FA} = \frac{2}{3}$, and

$$\frac{OE}{EB} = \frac{1}{3}$$
. The lines AE and BF intersect at R. Find $\frac{AR}{RE}$ and $\frac{BR}{RE}$. The line OR produced meets AB at D. Find $\frac{AD}{DB}$.

21). In the parallelogram *OACB*, $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$. The mid - point of *AC* is *D*. Find \overrightarrow{OD} in terms of \underline{a} and \underline{b} . The lines *AB* and *OD* intersect at *E*.

Find
$$\frac{AE}{EB}$$
 and $\frac{OE}{ED}$

22). In the parallelogram, ABCD, the mid - point of AB is X. The lines DX and AC meet at P. Let $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$,

 $\overrightarrow{AP} = \lambda \overrightarrow{AC}$, and $\overrightarrow{DP} = \mu \overrightarrow{DX}$,

i.Find \overrightarrow{AP} in terms of λ , \underline{a} , \underline{b} .

ii.Find \overrightarrow{AP} in terms of μ , \underline{a} , \underline{b}

Hence show that *P* is a trisection point of *AC* and *DX* lines.

ANANDA ILLANGAKOON

- 23). *ABCD* is a parallelogram. $\overrightarrow{AB} = \underline{a}, \overrightarrow{AD} = \underline{b}$. The mid-point of *BC* is *E*. Find the vector \overrightarrow{AE} . The lines *BD* and *AE* intersect at *F*. Find the ratio *BF:FD*. The lines *DE* produced and *AB* produced meet at the point *G*. show that DG = 2DE and AG = 2AB.
- 24). In the parallelogram, *OACB*, given that $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$. The point *D* is on *AC* such that *AD*:*DC* = 3:2. The lines OD and AB intersect at *E*.

Express $\overrightarrow{OE} = \lambda \left(\underline{a} + \frac{3}{5}\underline{b}\right)$ and $\overrightarrow{OE} = \underline{a} + \mu (\underline{b} - \underline{a})$. where λ and μ scalars to be determined. Hence find, OE : ED and AE : EB.

25). Given that $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$, $\overrightarrow{OP} = \frac{4}{5}\overrightarrow{OA}$ and that Q is the mid point of AB, express \overrightarrow{AB} and \overrightarrow{PQ} in terms of

- <u>a</u> and <u>b</u>. PQ is produced to meet OB produced at R, so that $\overrightarrow{QR} = n\overrightarrow{PQ}$ and $\overrightarrow{BR} = k\underline{b}$. Express \overrightarrow{QR} .
 - i). in terms of n, \underline{a} and \underline{b} . *ii*). in terms of k, \underline{a} and \underline{b} . Hence find the value of *n* and of *k*.
- 26). The position vectors of three points *A*, *B* and *C* relative to an origin O are \underline{p} , $3\underline{q} \underline{p}$ and $9\underline{q} 5\underline{p}$ respectively. Show that the points *A*, *B* and *C* lie on the same straight line and state the ratio *AB* : *BC*. Given that *OBCD* is a

paralleogram and that E is the point such that $\overrightarrow{DB} = \frac{1}{3}\overrightarrow{DE}$. Find position vectors of D and E relative to O.

- 27). \underline{a} and \underline{b} are two non-zero, non-parallel vectors. when α and β are two scalars and if $\alpha \underline{a} + \beta \underline{b} = \underline{0}$, show that
 - $\alpha = 0, \beta = 0$. *OAB* is a triangle .Given that $\overrightarrow{OA} = \underline{a}, \overrightarrow{OB} = \underline{b}$. The point *D* is on *OB* and *E* is on *OA* so that
- $\frac{OD}{DR} = \frac{1}{2}$ and $\frac{OE}{EA} = \frac{2}{3}$. The lines AD and BE intersect at G. Show that \overrightarrow{OG} can be expressed as
- $\overrightarrow{OG} = \underline{a} + \lambda \left(\frac{\underline{b}}{3} \underline{a}\right)$ and $\overrightarrow{OG} = \underline{b} + \mu \left(\frac{2}{5}\underline{a} \underline{b}\right)$ where λ and μ are scalars. Hence find \overrightarrow{OG} .

The line OG produced meet AB at D'. Find $\overrightarrow{OD'}$. Hence find \overrightarrow{OC} such that OACD' is a parallelogram.

- 28). The points A, B and C have position vectors a, b and c respectively reffered to an origin O.
- *a*). Given that the point X lies on AB produced. So that AB:BX=2:1, find \underline{x} , the position vector of X, in terms of \underline{a} and \underline{b} .
- *b*). If Y lies on *BC*, between *B* and *C* so that *BY*: *YC*=1:3. Find \underline{y} , the position vector of *Y*, in terms of \underline{b} and \underline{c} .
- c).Given that Z is the mid-point of AC. Show that X, Y and Z are collinear.
- d).Calculate XY : YZ
- 29). In the triangle OAB, $\overrightarrow{OA} = \underline{a}, \overrightarrow{OB} = \underline{b}$. The mid points of *OA*, *OB* are *D*, *E* respectively. The lines *BD* and *AE* meet at *G*. show that

3

i)
$$\overrightarrow{OG} = \frac{\underline{a} + \underline{b}}{3}$$
 ii) $BG: GD = AG: GE = 2:1$

The line OG produced meets AB at F. find BF : FA. Hence show that the medians of a triangle are concurrent.

30). The vertices *A*, *B* and *C* of a triangle have position vectors \underline{a} , \underline{b} and \underline{c} respectively relative to an origin O. The point *P* is on *BC* such that BP:PC=3:1 the point *Q* is on *CA* such that CQ:QA=2:3 the point *R* is on *BA* produced such that BR:AR=2:1. The position vectors of *P*, *Q* and *R* are $\underline{p}, \underline{q}$ and \underline{r} respectively.

Show that \underline{q} can be expressed in terms of \underline{p} and \underline{r} and hence or otherwise show that *P*, *Q* and *R* are collinear. State the ratio of the lengths of the line segments *PQ* and *QR*.

31). Prove that for any two vectors \underline{a} and \underline{b}

- *i*). $|\underline{a}| |\underline{b}| \le |\underline{a} + \underline{b}| \le |\underline{a}| + |\underline{b}|$ *ii*). $|\underline{a} - \underline{b}| \ge |\underline{a}| - |\underline{b}|$
- 32). The point *P* is on *AB*. The position vectors of *A*, *B* relative to origin O are \underline{a} , \underline{b} . If AP : PB = m : n when m + n = 1, show that the position vector of *P* is $\underline{ma} + \underline{nb}$. The sides *BC*, *CA*, *AB* or produced of triangle *ABC*

are cut by a line at X, Y, Z. Show that $\frac{AZ}{ZB} \cdot \frac{BX}{XC} \cdot \frac{CY}{YA} = -1$.

33). In the triangle OAB, $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$. The points *C* and *D* are on *OA* and *OB* such that *OC*: CA = 2: 1 and OD: DB = 3: 4. The lines *BC* and *AD* intersect at *G* when λ and μ are two scalars show that

- i) $\overrightarrow{OG} = \underline{a} + \lambda(-\underline{a} + \frac{3}{7}\underline{b})$
- ii) $\overrightarrow{OG} = \underline{b} + \mu(-\underline{b} + \frac{2}{3}\underline{a})$. Find λ and μ .

Hence find the ratios AG: GD and CG: GB.

- 34). Through the middle point *P* of the slide *AD* of a parallelogram *ABCD* the straight line *BP* is drawn cutting *AC* at *R* and *CD* produced at *Q*. Prove that QR=2RB
- 35). In the triangle *OAB*, the position vectors of *A* and *B* relative to *O* are \underline{a} and \underline{b} respectively. The points *D*, *E* are situated on *OB*, *OA* such that *OD* : *DB* = 5 : 2 and *OE* : *EA* = 3 : 4.

The lines AD and BE intersect at G. Show that $\overrightarrow{OG} = \underline{b} + \lambda \left(\frac{3}{7} \underline{a} - \underline{b}\right)$. Where λ is a scalar.

By writing another expression for \overrightarrow{OG} , find \overrightarrow{OG} .

The lines OG and AB meet at F. By writing $\overrightarrow{OF} = k \overrightarrow{OG}$ and find the ratio. AF : FB.

Verify that $\frac{AE}{EO} \cdot \frac{OD}{DB} \cdot \frac{BF}{FA} = 1$.

36).*a*).The mid points of the sides *BC*, *CA*, *AB* of the triangle *ABC* are *D*, *E* and *F* respectively. Show that,

i).
$$2\overrightarrow{AB} + 3\overrightarrow{BC} + \overrightarrow{CA} = 2\overrightarrow{FC}$$

ii).
$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \underline{0}$$

b). OABC is a parallelogram. The position vectors of the points A, B and C relative to O are $\underline{a}, \underline{b}$ and \underline{c} respectively. M is the mid point of BC.

Express in terms of $\underline{a},\underline{c}$ the position vector of any point X on OM. If X lies on AC, deduce that, OM and AC are trisected by X.

- c). The point S is on the side QR of the triangle PQR such that $\frac{RS}{SQ} = \frac{3}{2}$. Show that $3\overrightarrow{PQ} + 2\overrightarrow{PR} = 5\overrightarrow{PS}$.
- 37). In the triangle ABC, $\overrightarrow{AB} = 2\underline{a}$ and $\overrightarrow{AC} = 2\underline{b}$, E and F are the mid points of AC and AB, BE and CF meet at X.
- *i*). Express \overrightarrow{BE} and \overrightarrow{CF} in terms of \underline{a} and \underline{b} *ii*). If $\frac{EX}{EB} = \lambda$ and $\frac{FX}{FC} = \mu$ by considering the triangles *AFX* and *AEX* obtain two different expressions for \overrightarrow{AX}

iii).Hence find the values of λ and μ .

iv). Show that *X* divides the side *BE* in the ratio 2 : 1.

- 38). *OAB* is a triangle. The position vectors of *A* and *B* relative to O are \underline{a} and \underline{b} respectively. Point *D* lies on *OA* such that *OD*: *DA* = 2:1. Point *E* lies on *OB* such that *OE* : *EB* = 1:3. The lines *BD* and *AE* intersect at *G*. Show that,
 - i). BG : GD = 9 :1 ii). AG : GE = 2 : 3 iii). $\overrightarrow{BG} = \frac{3}{5}\underline{a} - \frac{9}{10}\underline{b}$ iv). $\overrightarrow{AG} = \frac{2}{5}\left(\frac{\underline{b}}{4} - \underline{a}\right)$ v). $\overrightarrow{OG} = \frac{6\underline{a} + \underline{b}}{10}$
- 39). *OAB* is a triangle. The position vectors of *A* and *B* relative to O are \underline{a} and \underline{b} respectively. Point *P* is on *OA* such that *OP*:*PA*=2:1 and *Q* is on *OB* such that *OQ*:*QB*=1:3. The lines *AQ* and *BP* meet at point *R*. Find \overrightarrow{OR} in two ways and hence find ratios *AR* : *RQ* and *BR* : *RP*. Find \overrightarrow{OR} only in terms of \underline{a} and \underline{b} .
- 40).*i*. The position vectors of the points *P*, *Q* relative to the orgin O are <u>p</u>, <u>q</u> respectively. Show that the position vector <u>r</u> of any variable point *R* on the line *PQ* can be writen as <u>r</u> = <u>p</u> + λ(<u>q</u> <u>p</u>) where λ is a parameter. *OACB* is a parallelogram. The sides OA , OB represent the vectors <u>a</u> and <u>b</u>. L, M are the mid points of *AC* and *CB*.

OL and *AM* intersect at *X*. Show that $\overrightarrow{OX} = \frac{4}{5} \left(\underline{a} + \frac{\underline{b}}{2} \right)$. *CX* and *OA* meet at *N*. Show that $\overrightarrow{ON} = \frac{2}{3} \underline{a}$.

ii. The median AD of a triangle ABC is bisected at E and BE is produced to meet the side AC in F.

Prove that
$$AF = \frac{1}{3}AC$$
 and $EF = \frac{1}{4}BF$.

41). The vectors \underline{a} and \underline{b} are two non - zero, non - parallel vectors. When α, β are scalars, if $\alpha \underline{a} + \beta \underline{b} = \underline{0}$, then show that $\alpha = 0$, $\beta = 0$.

 $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ C is a point such that $\overrightarrow{OC} = \underline{a} + \underline{b}$. P is the midpoint of BC. Then show that $\overrightarrow{OP} = \frac{1}{2}(\underline{a} + 2\underline{b})$. If the line OP meets *AB* at *R*, show that $\overrightarrow{RB} = \underline{b} - k(\underline{a} + 2\underline{b})$. Where k is a scalar. Show also that AR : RB = 2 : 1.

42).*A* and *B* are two points such that $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. The mid point of *OA* is *M*. *X* is a point on *OB* such that OX : XB = 3 : 1 and *Y* is a point on *AX* so that AY : YX = 4 : 1.

- i). Express \overrightarrow{OM} , \overrightarrow{OX} and \overrightarrow{OY} interms of <u>a</u> and <u>b</u>.
- ii). Show that $\overrightarrow{BY} = \frac{1}{5}(\underline{a} 2\underline{b})$
- iii). Show that B, Y and M are collinear iv). Show that BY : YM = 2 : 3

43). *ABCD* is a parallelogram. *L* and *M* are points on *BC* and *DC*, such that $\frac{BL}{LC} = \frac{DM}{MC} = \frac{1}{2}$. *AL* and *BD* intersect at *P* and *AM* and *BD* intersect at *Q*.

Find the ratios AP : PL and DQ : QB and hence show that $PQ = \frac{1}{2}BD$.

- 44). The position vectors of the points *P* and *Q* relative to a fixed origin are $2\underline{a}$ and $2\underline{b}$ respectively. *S* and *R* are the mid-points of *OP* and *OQ* respectively. *SQ* and *PR* meet at *X*. If *SX*: *SQ* = m and *RX*: *RP* = *n* then show that $\overrightarrow{OX} = \underline{a} + m(2\underline{b} \underline{a}) = b + n(2\underline{a} \underline{b})$. Hence find the values of *m* and *n*.
- 45).(i) Let \underline{a} and \underline{b} be two non-zero, non-parallel vectors. If $\alpha \underline{a} + \beta \underline{b} = \underline{0}$ Where α and β are two scalars, show that $\alpha = 0$ and $\beta = 0$.
 - (ii) *O*, *A*, *B* are three non-collinear points so that $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$ points *P*, *Q* are such that $\overrightarrow{OQ} = \frac{\underline{a}}{2}$ and

 $\overrightarrow{QP} = \frac{|\underline{a}|}{2|\underline{b}|}\underline{b}$. Express \overrightarrow{OP} and \overrightarrow{PA} in terms of \underline{a} and \underline{b} , and deduce that,

(i)
$$\underline{a} = \overrightarrow{OP} + \overrightarrow{PA}$$
 (ii) $\underline{b} = \frac{|\underline{b}|}{|\underline{a}|} \left(\overrightarrow{OP} - \overrightarrow{PA} \right)$

46). In triangle *OAB* the position vectors of *A* and *B* relative to origin *O* are <u>a</u> and <u>b</u> respectively. Points *D* and *E* are on *OB* and *OA* such that OD: DB = 5: 2 and OE: EA = 3: 4. The lines *AD* and *BE* intersect at *G*.

When λ is a scalar, show that $\overrightarrow{OG} = \underline{b} + \lambda \left[\frac{3\underline{a}}{7} - \underline{b} \right].$

Write down another expression for \overrightarrow{OG} . Find scalars involving in them. Express \overrightarrow{OG} interms of <u>a</u> and <u>b</u>.

- 47).*i*. Position vectors of two points *P* and *Q* relative to a point *O* are \underline{p} and \underline{q} respectively. Show that the position vector of any point on the line *PQ* is $t\underline{p} + (1-t)\underline{q}$. Where *t* is a parameter. \underline{a} and \underline{b} are two non-parallel vectors. The position vectors of points *A*, *B*, *C* and *D* are \underline{a} , $2\underline{b}$, $2\underline{a}$ and $3\underline{b}$ respectively. Show that the position vector of point of intersection of *AB* and *CD* is 2(3b-a).
- *ii*..Relative to an origin O the position vectors of the points *A*, *B* are \underline{a} and \underline{b} . Show that the vector equation of the line AB is $\underline{r} = \underline{a} + t(\underline{b} \underline{a})$.

6

If the position vectors of *C*, *D* are $\frac{\underline{a}}{2}$, $\frac{3\underline{b}}{2}$. Find the position vector of the intersection of *AB* and *CD*.

48). *Q* is the point on the side *AB* nearer to *B* which trisects *AB* of the triangle *OAB*. *P* is a point on *OQ* such that *OP*: OQ = 2:5. The line *AP* produced meets *OB* at *R*. Show that $\overrightarrow{OP} = \frac{2}{15}(\underline{a}+2\underline{b})$ and write down \overrightarrow{AP} interms of \underline{a} and \underline{b} . Where \underline{a} and \underline{b} are the position vectors of *A* and *B* respectively, relative to *O*. Find the value of scalar *k* so that $\overrightarrow{OA} + k\overrightarrow{AP}$ is independent of \underline{a} . By expressing the position vector \underline{r} of *R* interms of \underline{b} and show that OR: OB = 4:13.

49). *ABC* is a triangle $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$, $\overrightarrow{OC} = \underline{c}$. Where *O* is a fixed point. Point *Q* is in the triangle such that *AQ*, *BQ*, *CQ* produced meet the sides *BC*, *CA*, *AB*, at *X*, *Y*, *Z* respectively.

If $\frac{BX}{XC} = \frac{1}{2}$ and $\frac{XQ}{QA} = \frac{3}{2}$, prove that $15\overrightarrow{OQ} = 9\underline{a} + 4\underline{b} + 2\underline{c}$ Find the ratio AY : YC.

50). *A*, *B*, *C* are three non-collinear points. $\overrightarrow{AB} = \underline{b}$, $\overrightarrow{AC} = 3\underline{a}$. Point *D* is situated such that $\overrightarrow{AD} = 3\underline{a} + \underline{b}$. *E* is on *CD* such that DE : EC = 1 : 2. Show that $\overrightarrow{AE} = \frac{1}{3}(9\underline{a} + 2\underline{b})$. The lines BC and AE intersect at *F*. If λ is a constant, show that $\overrightarrow{FB} = \underline{b} - \lambda (9a + 2\underline{b})$. Prove also that FB : CF = 3 : 2.

51). *A*, *B*, *C* points are such that $\overrightarrow{AB} = \underline{a}$ and $\overrightarrow{AC} = \underline{b}$. Point *E* is on *BC* such that BE : EC = k : 1. Point *F* is on *AE*. *CF* produced meets *AB* at *H* and *BF* produced meets *AC* at *L*. If *AH* : *HB* = 3k : 1 and *CL* : *LA* = 2k : 1. Prove that $(1+k)\overrightarrow{AE} = \underline{a} + k\underline{b}$ and $(1+2k+6k^2)\overrightarrow{AF} = 6k^2 \underline{a} + \underline{b}$ Deduce that $6k^3 = 1$.

52). The position vectors of *P* and *Q* are <u>a</u> and <u>b</u>. Find the position vector of point *R* which divides *PQ* in the ratio 3 : 2. The position vectors of points *S* and *T* are $2\underline{a}$ and $\frac{(9\underline{b}-14\underline{a})}{5}$. Show that the points *R*, *S*, *T* are collinear. Also find the ratio *R* divides the line *ST*.

- 53). In the triangle *OAB*, $\overrightarrow{OA} = 2\underline{a}$ and $OB = 3\underline{b}$, *C* is the midpoint of *OA* and *D* is the point on *OB* such that OD : DB = 2 : 1. *OD* and *BC* meet at *E*.
 - (a) Express \overrightarrow{AD} and \overrightarrow{CB} in terms of <u>a</u> and <u>b</u>.

(b) By expressing \overrightarrow{OE} in the form $\lambda \underline{a} + \mu \underline{b}$ in two different ways, prove that E is the midpoint of BC.

- 54). O, A, B and C are four points such that $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = 2\underline{b}$ and $\overrightarrow{OC} = 6\underline{a} 2\underline{b}$ show that A, B and C are collinear.
- 55). The four points *O*, *A*, *B* and *C* are such that $\overrightarrow{OA} = \underline{a} \quad \overrightarrow{OB} = \underline{b}$ and $\overrightarrow{OC} = \underline{ka} \underline{b}$. Given that *A*, *B* and *C* are collinear, find the value of *k*.

56). *OAB* are three points such that $\overrightarrow{OA} = 2\underline{a}$ and $\overrightarrow{OB} = \underline{b}.C$ is the midpoint of *OA* and *OB* is produced to *D* such that

- BD = OB. E is a point on CD such that CE : ED = 1:2. Find AB, CD and AE in terms of <u>a</u> and <u>b</u>. and prove that A, E and B are collinear.
- 57). The medians BE and CF of the triangle ABC intersect at G. Given that

ANANDA ILLANGAKOON

 $\overrightarrow{AB} = 2\underline{a} \text{ and } \overrightarrow{AC} = 2\underline{b},$

(a) express \overrightarrow{BE} and \overrightarrow{CF} in terms of <u>a</u> and <u>b</u>.

(b) expressing \overrightarrow{AG} in the form $k\underline{a} + \underline{mb}$ in two different ways, prove that G divides each median in the ratio 1 : 2

- 58). *ABCD* is a trapezium in which *AB* is parallel to and half *DC*. The diagonals *AC* and *BD* intersect at *E*. Given that $AB = \underline{p}$ and $BC = \underline{q}$ express \overrightarrow{AC} and \overrightarrow{BD} in terms of \underline{p} and \underline{q} and find the ratio in which *E* divides *AC*.
- 59). *ABCD* is a parallelogram in which *E* and *F* are the midpoints of *AB* and *CD* respectively. *AF* and *CE* intersect the diagonal *BD* at *X* and *Y*. Using vectors, show that the points *X* and *Y* trisect the diagonal *BD*.
- 60). *P*, *Q* and *R* are points on the sides *AB*, *BC* and *CA*, respectively, of a triangle *ABC* such that *AP* : *PB* = 1:2, BQ:QC = 2:3 and CR:RA = 3:1. *BR* and *CP* meet at *X*. Given that $\overrightarrow{AP} = \underline{a}$ and $\overrightarrow{AR} = \underline{b}$, find \overrightarrow{AQ} , \overrightarrow{BR} , \overrightarrow{CP} and \overrightarrow{AX} in terms of \underline{a} and \underline{b} and show that *AP*, *BQ* and *CR* are concurrent.
- 61). The sides \overrightarrow{AD} , \overrightarrow{AB} of the parallelogram represent the vectors \underline{a} and \underline{b} respectively. The point E is on DCand F is on BC such that DE:EC=1:2 and BF:FC=2:1 respectively. DF and AE intersect at K. Show that $10\overrightarrow{AK}=3(3\underline{a}+\underline{b})$ If CK and AD intersect at H, show that $7\overrightarrow{AH}=6\underline{a}$
- 62).Let the points $A \equiv (-2,1)$, $B \equiv (1,3)$, $C \equiv (1,-1)$. Find the position vectors of the points A, B and C. Also find the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} . Hence find the lengths of the sides of the triangle ABC.

63).Let
$$\overrightarrow{OA} = 7\underline{i} + 10\underline{j}$$
, $\overrightarrow{OB} = 4\underline{i} + 5\underline{j}$, $\overrightarrow{OC} = 2\underline{i} - \underline{j}$. Find
 $i. |\overrightarrow{OA} + \overrightarrow{OB}|$ $ii. |\overrightarrow{OA} - \overrightarrow{OC}|$ $iii. |\overrightarrow{3OA} - 2\overrightarrow{OB}|$

64). The position vector of the point P is $12\underline{i} + 5\underline{j}$. Find

i.The distance to *P* from *O*

ii.unit vector in the direction \overrightarrow{OP} .

iii. The vector of size 26 in the direction \overrightarrow{OP} .

iv. The angle OP makes with (+) X-axis.

65). The position vectors of the points A and B are $\underline{i} + 2\underline{j}$ and $3\underline{i} - 4\underline{j}$ respectively. Find

i. \overrightarrow{AB} *ii*. \overrightarrow{AB} *iii*.unit vector in the direction \overrightarrow{AB}

iv. The vector of size 98 in the direction of \overrightarrow{AB}

v. The angles *AB* makes with *X* and *Y* axes

66).Let $\overrightarrow{AB} = (\lambda - 1)\underline{i} + (2\lambda + 1)\underline{j}$. find minimum of $|\overrightarrow{AB}|$ and corresponding value of λ .

67). Relative to O, the position vectors of the points A and B are \underline{a} and \underline{b} respectively. where

 $\underline{a} = 3\underline{i} - \underline{j}, \ \underline{b} = \lambda(\underline{i} + 2\underline{j})$. Find $|\overrightarrow{AB}|$. Also find the minimum value of $|\overrightarrow{AB}|$ and corresponding value of λ .

8

68).Let $\underline{a} = \underline{i} - 2\underline{j}$ and $\underline{b} = -3\underline{i} + \underline{j}$. If the vector $\underline{a} + \lambda \underline{b}$ is parallel to $-\underline{i} - 3\underline{j}$, find the value of λ .

69).Given that $\underline{a} = 2\underline{i} - \underline{j}$, and $\underline{b} = \underline{i} + \underline{j}$.

i. If $\underline{a} + \lambda \underline{b}$ is parallel to the direction of \underline{i} find the value of λ .

- *ii*. If $\mu \underline{a} + \underline{b}$ is parallel to the direction of \underline{j} , find the value of μ .
- 70). The position vectors of the the points A and B relative to an origin O are \underline{a} and \underline{b} respectively. The point C is
 - situated such that $\overrightarrow{OC} = \underline{a} + 2\underline{b}$. The mid- point of *BC* is *D*. Show that $2\overrightarrow{OD} = \underline{a} + 3\underline{b}$. if the lines *OD* and *AB* intersect at *E*, show that AE:EB = 3:1.
- 71). (i) If $\underline{a} = \underline{i} 2\underline{j}$, $\underline{b} = 4\underline{i}$ and $\underline{c} = 3\underline{i} \underline{j}$ find $\underline{a} + \underline{b} + \underline{c}$ and the unit vector along $\underline{a} + \underline{b} + \underline{c}$.
 - (ii) *A*, *B*, *C* are three points on *OXY* plane. Where *O* is the vector origin such that $\overrightarrow{OA} = 2\underline{j}, \ \overrightarrow{OB} = -\underline{i} + 5\underline{j}, \ \overrightarrow{OC} = 2\underline{i} + 4\underline{j}$. Find $\overrightarrow{AB}, \ \overrightarrow{BC}, \ \overrightarrow{CA}$ and hence show that *ABC* is an isoscelles triangle.
- 72). If $\overrightarrow{OA} = \underline{i} + 3\underline{j}$, $\overrightarrow{OB} = 2\underline{i} + 4\underline{j}$, $\overrightarrow{OC} = 5\underline{i} + 4\underline{j}$. Find,
 - (i) $\left| \overrightarrow{OA} + \overrightarrow{OB} \right|$ (ii) $\left| \overrightarrow{AB} + \overrightarrow{BC} \right|$ (iii) $\left| \overrightarrow{AB} \overrightarrow{AC} \right|$
- 73). If $\overrightarrow{OA} = \underline{i} + 2\underline{j}$, $\overrightarrow{OB} = 3\underline{i} \underline{j}$, $\overrightarrow{OC} = -\underline{i} + 5\underline{j}$. Find \overrightarrow{AB} and \overrightarrow{CA} . Hence show that *A*, *B*, *C* are collinear.
- 74). Three points A, B, C are such that

 $\overrightarrow{OA} = 2\underline{i} + 3\underline{j}, \overrightarrow{OB} = 6\underline{i} + 6\underline{j}, \overrightarrow{OC} = \underline{i}$. Where *O* is the origin. Find $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$. Hence find the length of the sides of the triangle *ABC*.

75). (i) Relative to an origin O, if A = (1, -2) and $\overrightarrow{AB} = 2\underline{i} + 3\underline{j}$, where B is a point, find coordinates of B.

(ii) If $\underline{a} = 3\underline{i} + \alpha \underline{j}$ and unit vector along \underline{a} is $\frac{\underline{i} + 2\underline{j}}{\sqrt{5}}$ find α .

(iii) If \underline{u} is a unit vector on OXY plane making an angle α with X axis, state \underline{u} in cartisian form.

76). The coordinates of the points *A*, *B*, *C* are (0, 4), (4, 10), (7, 8) respectively. If the unit vecors along *X* and *Y* axes are \underline{i} , \underline{j} respectively, find interms of \underline{i} , \underline{j} the vectors \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} . Hence show that the triangle *ABC* is a right angled triangle.

77) (i)
$$\overrightarrow{OA} = \underline{i} + 3\underline{j}, \ \overrightarrow{OB} = 2\underline{i} + 4\underline{j}, \ \overrightarrow{OC} = 5\underline{i} + 4\underline{j}$$
. Find
(i) $|\overrightarrow{OA} + \overrightarrow{OB}|$ (ii) $|\overrightarrow{AB} + \overrightarrow{BC}|$ (iii) $|\overrightarrow{AB} - \overrightarrow{AC}|$
(ii) If $\overrightarrow{OA} = \underline{i} + 2\underline{j}, \ \overrightarrow{OB} = 3\underline{i} - \underline{j}, \ \overrightarrow{OC} = -\underline{i} + 5\underline{j}$ find \overrightarrow{AB} and \overrightarrow{CA} . Hence show that *A*, *B*, *C* are collinear.

9

(iii) If $\underline{a} = 2\underline{i} + 3j$, $\underline{b} = i + 5j$, $\underline{c} = a + 2\underline{b}$

(a) Find unit vector along \underline{c} .

(b) If \underline{a} , \underline{b} are the position vectors of A and B, then find position vector of R on AB such that AR : RB = 3 : 2.

78). In the triangle *ABC*, the position vectors of *A*, *B*, *C* are $\underline{a} = 3\underline{i} + 4j$, $\underline{b} = i + j$, $\underline{c} = 10i$ respectively.

(i) Find the length of the median *AD*.

(ii)Find the position vector of the centroid of the triangle.

79).Side of a square OABC is 2a. The unit vectors along OA, OC are \underline{i} , \underline{j} . The mid points of AB and BC are L,M. OL and AM intersect at P and BP and OA intersect at N. When λ and μ are scalars. Show that,

i).
$$\overrightarrow{OP} = \lambda(2a\underline{i} + aj)$$

ii). $\overrightarrow{OP} = 2ai + \mu(-a\underline{i} + 2aj)$

Show by finding λ , μ that $ON = \frac{2}{3}OA$

80). *ABCD* is a rectangle with AB = 2a, AD = a. The mid points of *BC* and *CD* are *E* and *F*. The unit vectors along *AB* and *AD* are \underline{i} , j. If the lines *AE*, *BF* intersect at *P*, when λ and μ are scalars show that,

i).
$$\overrightarrow{AP} = \lambda \left(2a\underline{i} + \frac{a}{2} \underline{j} \right)$$

ii). $\overrightarrow{AP} = 2a\underline{i} + \mu \left(-a\underline{i} + a\underline{j}\right)$

Hence find λ and μ obtain *AP*:*PE* and *BP*:*PF*

81). *OABC* is a rectangle. OA = a, OC = b. The unit vectors along *OA* and *OC* are \underline{i} and \underline{J} respectively. *D* is a point on *CB* such that $\frac{CD}{DB} = \frac{3}{2}$. *OD* and *CA* intersect at *E*. The *BE* produced meets *OC* at *F*.

i. Express \overrightarrow{OD} in terms of \underline{i} and \underline{j}

ii. Express \overrightarrow{OE} in terms of \underline{i} and \underline{j} *iii*. Express \overrightarrow{CA} in terms of \underline{i} and \underline{j}

iv. Hence by finding \overrightarrow{CE} , by the triangle *OCE* express \overrightarrow{OE} .

v. Using (*ii*) and (*iv*) results obtain $\frac{OE}{ED}$ and $\frac{CE}{EA}$.

VECTOR DOT PRODUCT (Scalar Product)

82).*i*. $\underline{a}, \underline{b}, \underline{c}$ are mutually perpendicular vectors of equal magnitude. Show that $\underline{a} + \underline{b} + \underline{c}$ is equally inclined to $\underline{a}, \underline{b}, \underline{c}$.

ii. Prove that in usual notation for any triangle ABC

a) $a = b \cos C + c \cos B$

b)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

83). Using vector dot product prove that the altitudes of a triangle are concurrent.

84). Find λ such that $\underline{a} = 2\underline{i} + 3\underline{j}$ perpendicular to $\underline{b} = \lambda \underline{i} + 5\underline{j}$.

85). Let A(1,2), B(3,3) and C(2,5) be the vertices of a triangle. Find the position vectors of A, B, C in terms of \underline{i} and \underline{j} . Find \overrightarrow{AB} , \overrightarrow{AC} and lengths of the sides AB and AC. Hence find the angle between AB and AC.

86). If the dot product of a vector with the vectors $-\underline{i} + \underline{j}$ and $4\underline{i} + 3\underline{j}$ are 1 and 17 respectively, find the vector.

87). If $|\underline{a}| = 3$ $|\underline{b}| = 1$ $|\underline{c}| = 4$ and $\underline{a} + \underline{b} + \underline{c} = \underline{0}$. Show that $\underline{a} \cdot \underline{b} + \underline{b} \cdot \underline{c} + \underline{c} \cdot \underline{a} = -13$.

88). If $\underline{a} + \underline{b} + \underline{c} = \underline{0}$ and $|\underline{a}| = 3$ $|\underline{b}| = 5$ $|\underline{c}| = 7$, Show that the angle between \underline{a} and \underline{b} is 60°

89). Two vectors \underline{a} and \underline{b} are such that $(\underline{a} + \underline{b}) \cdot (\underline{a} - \underline{b}) = 0$ show that $|\underline{a}| = |\underline{b}|$.

90). \underline{a} and \underline{b} are two vectors perpendicular to each other. Prove that $|\underline{a} + \underline{b}|^2 = |\underline{a} - \underline{b}|^2$. 91). $\underline{\hat{a}}$ and $\underline{\hat{b}}$ are unit vectors and θ is the angle between them. Show that $\sin \frac{\theta}{2} = \frac{1}{2} |\underline{\hat{a}} - \underline{\hat{b}}|$.

92). Find $|\underline{a}|$ and $|\underline{b}|$ if $(\underline{a} + \underline{b}).(\underline{a} - \underline{b}) = 12$ and $|\underline{a}| = 2|\underline{b}|$.

93). Show that $|\underline{a}|\underline{b}+|\underline{b}|\underline{a}$ is perpendicular to $|\underline{a}|\underline{b}-|\underline{b}|\underline{a}$, for any two non-zero vectors \underline{a} and \underline{b} .

94). If $\underline{a} + \underline{b} + \underline{c} = \underline{0}$, show that the angle θ between the vectors \underline{b} and \underline{c} is given by

$$\cos \theta = \frac{\left|\underline{a}\right|^2 - \left|\underline{b}\right|^2 - \left|\underline{c}\right|^2}{2\left|\underline{b}\right|\left|\underline{c}\right|}$$

95). A parallelogram is constructed on the vector $\underline{a} = 3\underline{p} - \underline{q}$ and $\underline{b} = \underline{p} + 3\underline{q}$. Given that $|\underline{p}| = |\underline{q}| = 2$ and the angle between \underline{p} and \underline{q} is $\frac{\pi}{3}$. show that lengths of the diagonals are $4\sqrt{7}$ and $4\sqrt{3}$.

96). Using vector method, show that the diagonals of a rhombus bisect each other at right angles.

- 97). The position vectors of the vertices of a triangle are $\underline{0}$, \underline{a} , \underline{b} . Show that its area Δ given by $4\Delta^2 = |\underline{a}|^2 |\underline{b}|^2 - (\underline{a}.\underline{b})^2 .$
- 98). $\underline{a}, \underline{b}, \underline{c}$ be three vectors of length 3,4,8 respectively.Let \underline{a} be perpendicular to $\underline{b} + \underline{c}$, \underline{b} to $\underline{c} + \underline{a}$, \underline{c} to $\underline{a} + \underline{b}$. Find the length of the vector $\underline{a} + \underline{b} + \underline{c}$.

99). Using vector dot product

i) Prove that the angle in a semi-circle is a right angle.

ii) Prove that the mid-point of the hypotenuse of a right- angled triangle is equidistant from its vertices.

iii) Prove the pythagorian theorem.

iv) Prove that the perpendicular bisectors of the sides of a triangle are concurrent.

100). $\underline{r} = \underline{a} + \lambda \underline{b}$ is the equation of a straight line. Where \underline{b} is the unit vector in the direction of the line. Prove that the equation of the line through the origin perpendicular to the given line is $\underline{r} = \mu [\underline{a} - (\underline{a} \cdot \underline{b}) \underline{b}]$. Where μ is a real parameter. Also show that the perpendicular distance of first line from the origin is

 $\left[\left|\underline{a}\right|^2 - \left(\underline{a}.\underline{b}\right)^2\right]^{\frac{1}{2}}.$

101) *i*.If $|\underline{a}| = 10$, $|\underline{b}| = 20$, and angle between \underline{a} and \underline{b} is 120° find $\underline{a} \cdot \underline{b} \cdot ii.$ using distributive law show that

$$a. (\underline{a} + \underline{b}).(\underline{a} + \underline{b}) = |\underline{a}|^2 + 2(\underline{a}.\underline{b}) + |\underline{b}|^2$$
$$b. (a-b).(a-b) = |a|^2 - 2(a.b) + |b|^2$$

102).simplify the following.

 $i. (2\underline{a} + \underline{b}).(3\underline{a} + 4\underline{b}) \qquad ii. (5\underline{a} + \underline{b}).(\underline{a} - 2\underline{b}) \qquad iii. 2\underline{a}.(3\underline{b} - 2\underline{a}).$

103).Let \underline{a} and \underline{b} be any two vectors. The vectors $(\underline{a} + \underline{b})$ and \underline{a} are perpendicular to each other. If $|\underline{b}| = \sqrt{2} |\underline{a}|$ show that $(2\underline{a} + \underline{b})$ and \underline{b} are perpendicular to each other.

104). $|\underline{a}| = 4$, $|\underline{b}| = 10$ and the angle between \underline{a} and \underline{b} is 60° . Find the angle between the vectors $(\underline{a} + \underline{b})$ and $(\underline{a} - \underline{b})$.

105) .Let $|\underline{a}| = 5$, $|\underline{b}| = 12$ and the angle between \underline{a} and \underline{b} is 30° . Find *i*. $(2\underline{a}+3\underline{b}).(\underline{a}-\underline{b})$ *ii*. $\underline{a}.(5\underline{a}+\underline{b})$

106). Find $\underline{a}.\underline{b}$ for the following

107). Find the angle between \underline{a} and \underline{b} .

$\underline{a} = 2\underline{i} + 5\underline{j}$	$\underline{a} = 2\underline{i} - 3\underline{j}$	$\underline{a} = (4\underline{i} - 5\underline{j})$
$i \underline{b} = \underline{i} + 4j$	$ii \cdot \underline{b} = 7\underline{i} + j$	$\overset{iii.}{\underline{b}} = (2\underline{i} + 11j)$

108). *i*. The angle between the vectors $(3\underline{i} - \underline{j})$ and $(2\underline{i} + \lambda \underline{j})$ is $\frac{\pi}{4}$. Find λ .

ii. If the vectors $(4\underline{i} - 3j)$ and $(\lambda \underline{i} + 2j)$ are perpendicular to each other, find λ .

iii. Relative to a vector origin *O*, the position vectors of *A* and *B* are $(2\underline{i} - 3\underline{j})$ and $(-4\underline{i} - \underline{j})$ respectively. Find the area of the triangle *OAB*.

ANANDA ILLANGAKOON

109). The vectors \underline{a} and \underline{b} are unit vectors. The vector $\underline{a} + \underline{b}$ is also unit vector.

i.Show that the angle between \underline{a} and \underline{b} is $\frac{2\pi}{3}$.

ii. Also show that $|\underline{a} - \underline{b}| = \sqrt{3}$.

110. In the usual notation, let \underline{i} and $\underline{i} + \underline{j}$ be the position vectors of two points A and B respectively, with respect to a fixed origin O. Also, let C be a point on the straight line through A parallel to OB. Show that $\overrightarrow{OC} = (1 + \lambda)\underline{i} + \lambda \underline{j}$, where λ is a real number.

Find the value of λ such that *BC* is perpendicular to *OB*.

111. In the usual notation, the position vectors of two points *A* and *B* with respect to an origin *O*, are $\lambda \underline{i} + \mu \underline{j}$ and $\mu \underline{i} - \lambda \underline{j}$ respectively, where λ and μ are real numbers such that $o < \lambda < \mu$. Show that $A\hat{O}B$ is a right angle. Let *C* be the mid-point of the line segment *AB*. If the vector \overrightarrow{OC} is of magnitude 2 and it makes an angle $\frac{\pi}{6}$ with the unit vector \underline{i} , find the values of λ and μ .

112. In the usual notation, let $\underline{a} = 3\underline{i} + 4\underline{j}$, $\underline{b} = 4\underline{i} + 3\underline{j}$ and $\underline{c} = a\underline{i} + (1-\alpha)\underline{j}$, where $\alpha \in \Re$.

Find i. \underline{a} and \underline{b} ,

ii. $\underline{a} \cdot \underline{c}$ and $\underline{b} \cdot \underline{c}$ in terms of α .

If the angle between \underline{a} and \underline{c} is equal to the angle between \underline{b} and \underline{c} , show that $\alpha = \frac{1}{2}$.

113.In the usual notation, let $-\underline{i}+2\underline{j}$ and $2\alpha\underline{i}+\alpha\underline{j}$ be the position vectors of two points *A* and *B* respectively, with respect to a fixed origin *O*, where $\alpha(>0)$ is a constant. Using scalar product, show that $\hat{AOB} = \frac{\pi}{2}$. Let *C* be the point such that *OACB* is rectangle. If the vector \overrightarrow{OC} lies along the y-axis, find the value of α .

114. The position vectors of two distinct points *A* and *B* with respect to a fixed origin *O*, **not collinear** with *A* and *B*, are <u>a</u> and <u>b</u> respectively. Let $\underline{c} = (1 - \lambda)\underline{a} + \lambda \underline{b}$ be the position vector of a point *C* with respect to *O*, where $0 < \lambda < 1$.

Express the vectors \overline{AC} and \overline{CB} in terms of \underline{a} , \underline{b} and λ .

Hence, show that the point *C* lies on the line segment *AB* and that $AC : CB = \lambda : (1 - \lambda)$.

Now, suppose that the line OC bisects the angle AOB. Show that $|\underline{b}|(\underline{a}.\underline{c}) = |\underline{a}|(\underline{b}.\underline{c})$ and hence, find λ .

115. In the usual notation, let 3i and 2i + 3j be the position vectors of two points A and B respectively, with respect to

a fixed origin *O*. Let *C* be the point on the straight line *OB* such that $\hat{OCA} = \frac{\pi}{2}$. Find \vec{OC} in terms of \underline{i} and \underline{j} .

116.Let *OAB* be a triangle, *D* be the mid-point of *AB* and *E* be the mid-point of *OD*. The point *F* lies on *OA* such that OF: FA = 1:2. The position vectors of *A* and *B* with respect to *O* are \underline{a} and \underline{b} respectively. Express the vectors \overrightarrow{BE} and \overrightarrow{BF} in terms of \underline{a} and \underline{b} . Deduce that *B*, *E* and *F* are collinear and find the ratio *BE:EF*.

Find the scalar product $\overrightarrow{BF}.\overrightarrow{DF}$ in terms of $|\underline{a}|$ and $|\underline{b}|$ and show that if $|\underline{a}| = 3|\underline{b}|$, then \overrightarrow{BF} is perpendicular to \overrightarrow{DF} .

117. In the usual notation, let $2\underline{i} + \underline{j}$ and $3\underline{i} - \underline{j}$ be the position vectors of two points *A* and *B*, respectively, with respect to a fixed origin *O*. Find the position vectors of the two distinct points *C* and *D* such that

$$A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$$
 and $OC = OD = \frac{1}{3}AB$.

118. Let OACB be a parallelogram and let D be the point on AC such that AD: DC = 2:1. The position vectors of points A and B with respect to O are λa and b, respectively, where λ > 0.
Express the vectors OC and BD in terms of a, b and λ.

Now, let \overrightarrow{OC} be perpendicular to \overrightarrow{BD} . Show that $3|\underline{a}|^2 \lambda^2 + 2(\underline{a}.\underline{b})\lambda - |\underline{b}|^2 = 0$ and find the value of λ ,

if
$$|\underline{a}| = |\underline{b}|$$
 and $A\hat{O}B = \frac{\pi}{3}$.

119.In the usual notation, let $\underline{i} + 2\underline{j}$ and $3\underline{i} + 3\underline{j}$ be the position vectors of two points *A* and *B* respectively, with respect to a fixed origin *O*.Also let *C* be the point such that *OABC* is parallelogram. Show that $\overrightarrow{OC} = 2\underline{i} + \underline{j}$.

Let $\overrightarrow{AOC} = \theta$. By considering $\overrightarrow{OA} \cdot \overrightarrow{OC}$, show that $\cos \theta = \frac{4}{5}$.

120.In the usual notation, the position vectors of four points A, B, C and D are

 $\underline{a} = -\underline{i} - j, \underline{b} = \underline{i} + 4j, \underline{c} = 8\underline{i} + \alpha j$ and $\underline{d} = 4\underline{i} - 2j$, respectively, where $\alpha \in \mathbb{R}$.

The lines *AB* and *DC* are parallel. Show that $\alpha = 8$.

The lines AC and BD intersect at a point E with the position vector \underline{e} . By considering \overrightarrow{AE} and \overrightarrow{AC} , show that $\underline{e} = (1 - \lambda)\underline{a} + \lambda \underline{c}$ for $\lambda \in \mathbb{R}$.

Similarly, also show that $\underline{e} = (1 - \mu)\underline{b} + \mu \underline{d}$ for $\mu \in \mathbb{R}$.

Hence find \underline{e} in terms of \underline{i} and \underline{j} .

By considering $\overrightarrow{EA} \cdot \overrightarrow{ED}$, find $A \widehat{E} D$.

121.In the usual notation, the position vectors of two points *A* and *B* with respect to a fixed origin *O* are $3\underline{i} + 2\underline{j}$ and $2\underline{i} + 4\underline{j}$, respectively. Show that *O*, *A* and *B* are non - collinear. Let *C* be the point such that $\overrightarrow{BC} = \lambda \overrightarrow{OA}$, where $\lambda \in \mathbb{R}$. Find \overrightarrow{OC} in terms of \underline{i} , \underline{j} and λ . show that if $BOC = \frac{\pi}{2}$, then $\lambda = -\frac{10}{7}$.

122.Let the position vectors of four points *A*, *B*, *C* and *D* be \underline{a} , \underline{b} , 3 \underline{a} and 4 \underline{b} , respectively with respect to a fixed origin *O*, where \underline{a} and \underline{b} are non - zero and non - parallel vectors. *E* is the point of intersection of *AD* and *BC*. Using the triangle law of addition for the triangle *OAE*,

show that $\overrightarrow{OE} = \underline{a} + \lambda(4\underline{b} - \underline{a})$ for $\lambda \in \mathbb{R}$. Similarly, show also that $\overrightarrow{OE} = \underline{b} + \mu(3\underline{a} - \underline{b})$ for $\mu \in \mathbb{R}$. Hence, show that $\overrightarrow{OE} = \frac{1}{11}(9\underline{a} + 8\underline{b})$.

123. In the usual notation, the position vectors of two points A and B, with respect to a fixed origin O are $2\underline{i} - 3\underline{j}$ and $\underline{i} - 2\underline{j}$, respectively. Using $\overrightarrow{AO} \cdot \overrightarrow{AB}$, find $O\hat{AB}$.

Let *C* be the point on *OA* such that $\hat{OCB} = \frac{\pi}{2}$, Find \vec{OC} .

124.Let \underline{a} and \underline{b} be non - zero and non - parallel vectors, and $\lambda, \mu \in \mathbb{R}$.

show that if $\lambda \underline{a} + \mu \underline{b} = \underline{0}$, then $\lambda = 0$ and $\mu = 0$.

Let *ABC* be a triangle. The mid - point of *AB* is *D* and the mid - point of *CD* is *E*. The lines *AE* (extended) and *BC* meet at F. Let $\overrightarrow{AB} = a$ and $\overrightarrow{AC} = b$. Using the triangle law of addition.

show that $\overrightarrow{AE} = \frac{\underline{a} + 2\underline{b}}{4}$

Explain why $\overrightarrow{AF} = \alpha \overrightarrow{AE}$ and $\overrightarrow{CF} = \beta \overrightarrow{CB}$, where $\alpha, \beta \in \mathbb{R}$. Considering the triangle *ACF*, show that $(\alpha - 4\beta)\underline{a} + 2(\alpha + 2\beta - 2)\underline{b} = \underline{0}$. Hence, find the values of α and β .

125. In the usual notation, let $2\underline{i} + \underline{j}$ and $3\underline{i} - \underline{j}$ be the position vectors of two points *A* and *B*, respectively, with respect to a fixed origin *O*. Find the position vectors of the two distinct points *C* and *D* such that $\hat{AOC} = \hat{AOD} = \frac{\pi}{2}$ and

$$OC = OD = \frac{1}{3}AB$$

126.let *OACB* be a parallelogram and let *D* be the point on *AC* such that AD: DC = 2:1. The position vectors of points *A* and *B* with respect to *O* are $\lambda \underline{a}$ and \underline{b} , respectively, where $\lambda > 0$. Express the vectors \overrightarrow{OC} and \overrightarrow{BD} in terms of $\underline{a}, \underline{b}$ and λ .

Now, let \overrightarrow{OC} be perpendicular to \overrightarrow{BD} . Show that $3|\underline{a}|^2 \lambda^2 + 2(\underline{a}.\underline{b})\lambda - |\underline{b}|^2 = 0$ and find the value of λ , if $|\underline{a}| = |\underline{b}|$ and $A\hat{OB} = \frac{\pi}{3}$.

127.Let $\alpha > 0$ and in the usual notation, let $\underline{i} + \alpha \underline{j}$ and $\alpha \underline{i} - 2\underline{j}$ be the position vectors of two points *A* and *B*, respectively, with respect to a fixed origin *O*. Also, let *C* be the point on *AB* such that AC:CB=1:2. It is given that *OC* is perpendicular to *AB*. Find the value of α .

128.Let \underline{a} and \underline{b} be two non-zero, non-parallel vectors. Show that $\alpha \underline{a} + \beta \underline{b} = \underline{0}$ if and only if $\alpha = 0$ and $\beta = 0$. Relative to a vector origin O, the position vectors of the four points A, B C and D are $\underline{a}, \underline{b}, 2\underline{a} + 5\underline{b}$ and $3\underline{a} + 2\underline{b}$ respectively. Express \overrightarrow{AC} and \overrightarrow{BD} in terms of \underline{a} and \underline{b} . Let E be the point of intersection of the lines AC and BD. Find the ratios AE : EC and BE : BD. using vector dot product, show that $\frac{3}{2}AE^2 - \frac{10}{9} \cdot BE^2 = \frac{4}{7}(5|\underline{b}|^2 - 3|\underline{a}|^2)$.

129.Relative to a vector origin *O*, the position vectors of the points *P* and *Q*, are \underline{p} and \underline{q} respectively. The point *R* lies on *PQ* such that *PR* : *RQ* = 2 : 1. Show that the position vector of the point *R* is $\frac{1}{3}\underline{p} + \frac{2}{3}\underline{q}$. A point *S* is on this plane such that *RS* and *RQ* are perpendicular to each other If it is given that $\underline{s} = \underline{p} + \underline{q}$, show that $\underline{p} \cdot \underline{q} = 2|\underline{p}|^2 - |\underline{q}|^2$. Also when k > 0, if $\underline{p} = 2\underline{i} + \underline{j}$ and $\underline{q} = k\underline{i} + 2\underline{j}$, find *k*.

130. The triangle *ABC* is an isosceles such that AC = BC. The internal angle bisectors of the vertices *A* and *B* meet at the point *D*. Relative to a fixed vector origin *O*, the position vectors of the points *A*, *B* and *C* are $2\underline{a} + \underline{b}$, $3\underline{a} - 5\underline{b}$, and $\underline{a} + 3\underline{b}$ respectively. Where \underline{a} and \underline{b} are two non - zero, non parallel vectors. Find \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} . By using vector dot product show that $3|\underline{a}|^2 + 60|\underline{b}|^2 = 28(\underline{a}.\underline{b})$. Hence if the line *CD* produced, meets *AB* at *E*, Show that *CE* is perpendicular to *AB*. Let the mid point of *CE* be *G*. The line *AG* meets *CB* at *F*. Find the ratios *AG* : *GF* and *CF* : *FB*.

131. The position vectors of the points *A* and *B*, relative to a vector origin *O* are <u>a</u> and <u>b</u> respectively. Point *C* is on the line passing through *O* parallel to *AB*. Find the position vector of *C* so that *OABC* is a parallelogram. Let *D* be a point on *OC* produced and *E* is a point on *OB* so that OE : EB = 3 : 1. Find the position vector of *D* so that *A*, *E*, *D* are collinear and find the ratio AE : ED. It is given that $AB = \sqrt{5}$ (units) and 2OA = OB.

Show that $B\hat{O}A = \cos^{-1}\left[\frac{5(|\underline{a}|^2 - 1)}{4|\underline{a}|^2}\right].$