VECTORS

1).*ABCDEF* is a regular hexagon. If $AB = a$ $\overrightarrow{AB} = \underline{a}$ and $\overrightarrow{BC} = \underline{b}$ $\overrightarrow{BC} = \underline{b}$, find the vectors \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AF} , \overrightarrow{AE} , \overrightarrow{CE} \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AF} , \overrightarrow{AE} , \overrightarrow{CE} in terms of *a* and *b* .

2).*ABCD* is a parallelogram. Show that \longrightarrow \longrightarrow \longrightarrow \longrightarrow

i. $\angle AC + DB = 2DC$ ii. $\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$ \longrightarrow \longrightarrow \longrightarrow

3).*ABCDE* is a pentagon. Show that $AB + AE + BC + ED + DC = 2AC$ $\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{ED} + \overrightarrow{DC} = 2\overrightarrow{AC}.$

4).*ABCD* is a parallelogram. The mid - points of the sides *AD* and *CD* are *E* and *F* respectively. By expressing the vectors *BE* \overrightarrow{BE} and \overrightarrow{BF} \overrightarrow{BF} in \overrightarrow{BA} \overrightarrow{BA} and \overrightarrow{BC} \overrightarrow{BC} vectors show that $\overrightarrow{BE} + \overrightarrow{BF} = \frac{3}{2}$ 2 $BE + BF = \frac{3}{2} BD$ $\overrightarrow{BE} + \overrightarrow{BF} = \frac{3}{2} \overrightarrow{BD}$.

5).*ABCD* is a quadrilateral. Show that $AB + DC = AC + DB$ $\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$.

6).The mid - points of the sides *AB* and *AC* of the triangle *ABC* are *D* and *E* respectively. Show that

$$
\overrightarrow{BE} + \overrightarrow{DC} = \frac{3}{2} \overrightarrow{BC}.
$$

7). The mid - points of the sides of the triangle *ABC* are *D*, *E*, and *F*. Show that $OA + OB + OC = OD + OE + OF$ $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF}$.

8).The mid - points of the sides of the quadrilateral *ABCD* are *P, Q, R, S*. Prove that $OA + OB + OC + OD = OP + OQ + OR + OS$ $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{OP} + \overrightarrow{OO} + \overrightarrow{OR} + \overrightarrow{OS}.$

- 9).The mid points of the sides *AB* and *BC* of the triangle *ABC* are *E* and *D* respectively. Prove that $AB + AC + BC = 4ED$ $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = 4\overrightarrow{ED}$.
- 10).Relative to a vector origon *O*, the position vectors of the points *A* and *B* are *a* and *b* . The points *P* and *Q* are on *OA* and *OB* such that $OP : PA = 2:1$ and $OQ : QB = 1:2$.

1. Find the following vectors in terms of α and β .

i.*OP* $\overline{}$ *ii*.*OQ* \longrightarrow *iii*. *PQ* $\overline{}$

2. The point *R* is such that $OR : AR = 2 : 1$. Find \overrightarrow{RB} \overrightarrow{RB} .

3. Show that *RB* and *PQ* are parallel, find the ratio *RB* : *PQ*.

4.The line *QP* is produced to *S* such that *QP PS* . Find the vectors *PS* \overrightarrow{PS} and \overrightarrow{AS} \overrightarrow{AS} in terms of <u>a</u> and <u>b</u>. 5.Show that the points *B, A* and *S* are collinear.

11). The points *O*, *A*, and *B* are not collinear. Let $OA = \underline{a}$ $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ $\overrightarrow{OB} = \underline{b}$. C is a point such that $\overrightarrow{OC} = \underline{a} + \underline{b}$ $\overrightarrow{OC} = a + b$. *P* is the mid-

point of *BC*. Show that $\overrightarrow{OP} = \frac{1}{2}(a+2b)$. 2 $OP = \frac{1}{2} (a + 2b)$ $\overrightarrow{OP} = \frac{1}{2}(\underline{a} + 2\underline{b})$.

12)*i*. The centroid of the triangle *ABC* is *G. O* is any point. Prove that $OA + OB + OC = 3OG$ $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$.

ii.ABCDEF is a regular hexagon. Prove that $AB + AC + AD + AE + AF = 3AD$ $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3\overrightarrow{AD}$.

13). Given that $AB = a$ $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{CA} = \underline{b}$ $\overrightarrow{CA} = \underline{b}$ and $\overrightarrow{CD} = 2\underrightarrow{a}$ $\overrightarrow{CD} = 2a$. Point E is on *CB* such that $\overrightarrow{CE} = 2\overrightarrow{EB}$ $\overrightarrow{CE} = 2\overrightarrow{EB}$.

i.Find the vectors represented by CB , EB , DB , AE , ED $\overrightarrow{CB}, \overrightarrow{EB}, \overrightarrow{DB}, \overrightarrow{AE}, \overrightarrow{ED}$.

*ii.*Show that the points *A, E, D* are collinear.

- 14).*a*).*ABCDEF* is a regular hexagon. Prove that $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6\overrightarrow{AG}$. Where *G* is the centroid of the hexagon.
- *b*). *ABCDEF* is a regular hexagon. Let $\overrightarrow{AB} = a$ and $\overrightarrow{BC} = b$. Find the vectors determined by the other four sides taken in order. Also express the vecotors

 \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AF} , \overrightarrow{AE} , \overrightarrow{CE} in terms of *a* and *b*.

c) *ABCDEF* is a regular hexagon. $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{EA} + \overrightarrow{FA} = 4\overrightarrow{AB}$

15).Prove by vectorial methods, that the straight line joining the middle points of two sides ofa triangle is parallel to the third side and is half of its length*.*

- 16).*a*).Prove that the straight line joining the middle points of two non-parallel sides of a trapezium is parallel to the parallel sides and half of their sum.
	- *b*).Prove that the straight line joining the middle points of the diagonals of a trapezium is parallel to parallel sides and half of their difference.
- 17).*a*). Prove that the quadrilateral formed by joining the mid-points of the sides of any quadrilateral taken in order is a parallelogram.

b).Prove that the lines joining the mid-points of opposite sides of a quadrilateral bisect each other.

18). From an origin O the points A, B, C have position vectors $a, b, 2b$ respectively. The points O, A, B are not

collinear. The mid point of AB is M and the points of trisection of AC nearer to A is T. Draw a diagram to show

O,A,B,C,M,T. Find, interms of *a* and *b* , the position vectors of M and T. Use your results to prove that O,M, T are collinear, and find the ratio in which M divides OT.

- 19)*i*. The position vectors of the three points *A, B, C* are \overline{a} , \overline{b} and $3\overline{a}$, $-2\overline{b}$ respectively. Find *AB* \overrightarrow{AB} and \overrightarrow{AC} \overrightarrow{AC} in terms of *a* and *b* . Hence show that *A, B, C* are collinear points.
	- *ii*. The position vectors of the points *A, B, C* are $(2a + b)$, $(a + 3b)$ and $(4a mb)$ respectively. If the three points *A, B, C* are collinear find the value of *m*.

20). In the triangle *OAB*, $OA = \underline{a}$ $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ $\overrightarrow{OB} = b$. The points *F* and *E* lie on *OA* and *OB* respectively such that 2 3 *OF* $\frac{\partial F}{\partial A} = \frac{2}{3}$, and

$$
\frac{OE}{EB} = \frac{1}{3}
$$
. The lines AE and BF intersect at R. Find $\frac{AR}{RE}$ and $\frac{BR}{RE}$. The line OR produced meets AB at D. Find $\frac{AD}{DB}$.

21). In the parallelogram *OACB*, $OA = \underline{a}$ $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ $\overrightarrow{OB} = \underline{b}$. The mid - point of *AC* is *D*. Find \overrightarrow{OD} \overrightarrow{OD} in terms of <u>a</u> and <u>b</u>. The lines *AB* and *OD* intersect at *E*.

Find
$$
\frac{AE}{EB}
$$
 and $\frac{OE}{ED}$

22). In the parallelogram, *ABCD*, the mid - point of *AB* is *X*. The lines *DX* and *AC* meet at *P*. Let $\overrightarrow{AB} = \underline{a}$ $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{AD} = \underline{b}$ $\overrightarrow{AD} = b$,

 $AP = \lambda AC$ $\overrightarrow{AP} = \lambda \overrightarrow{AC}$, and $\overrightarrow{DP} = \mu \overrightarrow{DX}$ $\overrightarrow{DP} = \mu \overrightarrow{DX}$,

.

i.Find *AP* \overrightarrow{AP} in terms of λ , <u>a</u>, <u>b</u>.

ii.Find *AP* \overrightarrow{AP} in terms of μ , <u>a</u>, <u>b</u>

Hence show that *P* is a trisection point of *AC* and *DX* lines.

- 23). *ABCD* is a parallelogram. $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{AD} = \underline{b}$. The mid-point of *BC* is *E*. Find the vector \overrightarrow{AE} . The lines *BD* and *AE* intersect at *F*. Find the ratio *BF*:*FD*. The lines *DE* produced and *AB* produced meet at the point *G*. show that $DG = 2DE$ and $AG = 2AB$.
- 24). In the parallelogram, *OACB*, given that $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$. The point *D* is on *AC* such that *AD*:*DC* = 3:2. The lines *OD* and *AB* intersect at *E*.

Express $OE = \lambda \left| \frac{a + b}{2} \right|$ and $OE = a + \mu(b-a)$ 5 $\overrightarrow{OE} = \lambda \left(\frac{a+3}{a+2b} \right)$ and $\overrightarrow{OE} = \frac{a}{a} + \mu \left(\frac{b-a}{a} \right)$ J $\left(\underline{a}+\frac{3}{5}\underline{b}\right)$ $= \lambda \left(\frac{a+3}{a+2b} \right)$ and $\overrightarrow{OE} = \underline{a} + \mu(\underline{b}-\underline{a})$. where λ and μ scalars to be determined. Hence find, OE : ED and *AE* : *EB*.

25). Given that $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$, $\overrightarrow{OP} = \frac{1}{5}OA$ $=\frac{4}{5}\overrightarrow{OA}$ and that Q is the mid point of AB, express \overrightarrow{AB} and \overrightarrow{PQ} in terms of

- *a* and *b* . PQ is produced to meet *OB* produced at R, so that $\overrightarrow{QR} = n\overrightarrow{PQ}$ and $\overrightarrow{BR} = kb$. Express \overrightarrow{QR} .
	- i). in terms of n, a and b . *ii*). in terms of k, a and b . Hence find the value of *n* and of *k.*
- 26). The position vectors of three points *A*, *B* and *C* relative to an origin O are p , $3q p$ and $9q 5p$ respectively. Show that the points *A, B* and *C* lie on the same straight line and state the ratio *AB : BC*. Given that *OBCD* is a
- paralleogram and that E is the point such that $DB = \frac{1}{3}DE$ $=\frac{1}{2}\overrightarrow{DE}$. Find position vectors of *D* and *E* relative to O.
- 27). <u>*a*</u> and *b* are two non-zero, non-parallel vectors. when α and β are two scalars and if $\alpha \underline{a} + \beta \underline{b} = 0$, show that
- $\alpha = 0$, $\beta = 0$. *OAB* is a triangle .Given that $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$. The point *D* is on *OB* and *E* is on *OA* so that
- . 3 and $\frac{OE}{B} = \frac{2}{3}$ 2 $=\frac{1}{2}$ and $\frac{OE}{B}$ = *EA OE DB OD* The lines *AD* and *BE* intersect at *G*. Show that *OG* can be expressed as
- $\overline{}$ J $\left(\frac{2}{5}a-b\right)$ and $\overrightarrow{OG} = \underline{b} + \mu \left(\frac{2}{5} \underline{a} - \frac{2}{5} \underline{b} \right)$ J $\left(\frac{b}{3}-a\right)$ $\overrightarrow{OG} = \underline{a} + \lambda \left(\frac{\underline{b}}{2} - \underline{a} \right)$ and $\overrightarrow{OG} = \underline{b} + \mu \left(\frac{2}{2} \underline{a} - \underline{b} \right)$ 5 and $\overrightarrow{OG} = \underline{b} + \mu \left(\frac{2}{7}\right)$ 3 $\lambda \left| \frac{b}{2} - a \right|$ and $\overline{OG} = b + \mu \left| \frac{b}{2} - a \right|$ where λ and μ are scalars. Hence find \overline{OG} .

The line *OG* produced meet *AB* at *D'*. Find *OD'*. Hence find \overrightarrow{OC} such that *OAC D'* is a parallelogram.

- 28). The points *A, B* and *C* have position vectors *a*,*b* and *c* respectively reffered to an origin O.
- *a*). Given that the point *X* lies on *AB* produced. So that *AB:BX=2:1*, find *x* , the position vector of *X*, in terms of *a* and *b* .
- *b*).If Y lies on *BC*, between *B* and *C* so that *BY:YC=1:3*. Find *y* , the position vector of *Y*, in terms of b and c .
- *c*).Given that *Z* is the mid-point of *AC.* Show that *X, Y* and *Z* are collinear.
- *d*).Calculate *XY : YZ*
- 29). In the triangle OAB, $\overrightarrow{OA} = \underline{a}, \overrightarrow{OB} = \underline{b}$. The mid points of *OA*, *OB* are *D*, *E* respectively. The lines *BD* and *AE* meet at *G*. show that

i)
$$
\overrightarrow{OG} = \frac{a+b}{3}
$$
 ii) $BG:GD = AG:GE = 2:1$

The line *OG* produced meets *AB* at *F*. find *BF* : *FA*. Hence show that the medians of a triangle are concurrent.

30). The vertices *A, B* and *C* of a triangle have position vectors a , b and c respectively relative to an origin O. The point *P* is on *BC* such that *BP:PC=3:1* the point *Q* is on *CA* such that *CQ:QA=2:3* the point *R* is on *BA* produced such that $BR: AR = 2:1$. The position vectors of *P*, *Q* and *R* are *p*,*q* and *r* respectively.

Show that q can be expressed in terms of p and r and hence or otherwise show that P , Q and R are collinear. State the ratio of the lengths of the line segments *PQ* and *QR*.

31). Prove that for any two vectors *a* and *b*

- *i*). $|\underline{a}| |\underline{b}| \le |\underline{a} + \underline{b}| \le |\underline{a}| + |\underline{b}|$ *ii*). $|a - b| \ge |a| - |b|$
- 32). The point *P* is on *AB*. The position vectors of *A*, *B* relative to origin O are α , β . If $AP : PB = m : n$ when $m + n = 1$, show that the position vector of *P* is $m\underline{a} + n\underline{b}$. The sides *BC*, *CA*, *AB* or produced of triangle *ABC*

are cut by a line at X, Y, Z. Show that $\frac{HZ}{ZB} \cdot \frac{BZ}{XC} \cdot \frac{C}{YA} = -1$ *CY XC BX ZB AZ*

33). In the triangle *OAB*, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$. The points *C* and *D* are on *OA* and *OB* such that *OC* : $CA = 2$: 1 and *OD* : *DB* = 3 : 4. The lines *BC* and *AD* intersect at *G* when λ and μ are two scalars show that

.

- i) $OG = \underline{a} + \lambda(-\underline{a} + \frac{5}{7}\underline{b})$ $\overrightarrow{OG} = \underline{a} + \lambda(-\underline{a} + \frac{3}{2}\underline{b})$
- ii) $OG = \underline{b} + \mu(-\underline{b} + \frac{2}{3}\underline{a})$ 3 $\overrightarrow{OG} = \underline{b} + \mu(-\underline{b} + \frac{2}{2}\underline{a})$. Find λ and μ .

Hence find the ratios *AG* : *GD* and *CG* : *GB*.

- 34).Through the middle point *P* of the slide *AD* of a parallelogram *ABCD* the straight line *BP* is drawn cutting *AC* at *R* and *CD* produced at *Q*. Prove that *QR=2RB*
- 35).In the triangle *OAB*, the position vectors of *A* and *B* relative to *O* are *a* and *b* respectively. The points *D*, *E* are situated on *OB*, *OA* such that *OD* : $DB = 5$: 2 and *OE* : $EA = 3$: 4.

The lines *AD* and *BE* intersect at *G*. Show that $\left| \overrightarrow{OG} \right| = \underline{b} + \lambda \left| \frac{\Delta}{7} \underline{a} - \underline{b} \right|$ J $\left(\frac{3}{7}\underline{a}-\underline{b}\right)$ $=$ **b** + $\lambda \left(\frac{3}{2}a - b \right)$ 7 $\lambda\left(\frac{3}{7}\underline{a}-\underline{b}\right)$. Where λ is a scalar.

By writing another expression for \overrightarrow{OG} , find \overrightarrow{OG} .

The lines *OG* and *AB* meet at *F*. By writing $\overrightarrow{OF} = k \overrightarrow{OG}$ and find the ratio. *AF* : *FB*.

Verify that $\frac{AE}{EO} \cdot \frac{OB}{DB} \cdot \frac{B}{FA} = 1$. *BF DB OD EO AE*

36).*a*).The mid points of the sides *BC, CA, AB* of the triangle *ABC* are *D, E* and *F* respectively. Show that,

i). $2\overrightarrow{AB} + 3\overrightarrow{BC} + \overrightarrow{CA} = 2\overrightarrow{FC}$

ii).
$$
\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \underline{0}
$$

b). *OABC* is a parallelogram. The position vectors of the points *A, B* and *C* relative to O are a, b and *c* respectively. *M* is the mid point of *BC*.

Express in terms of a, c the position vector of any point *X* on *OM*. If *X* lies on *AC*, deduce that, *OM* and *AC* are trisected by *X*.

- *c*). The point *S* is on the side *QR* of the triangle PQR such that $\frac{2Q}{Q} = \frac{2}{2}$ *3 SQ* $rac{RS}{SQ} = \frac{3}{2}$. Show that $3\overrightarrow{PQ} + 2\overrightarrow{PR} = 5\overrightarrow{PS}$.
- 37). In the triangle ABC, $\overrightarrow{AB} = 2a$ and $\overrightarrow{AC} = 2b$, E and F are the mid points of *AC* and *AB*, *BE* and *CF* meet at *X*.
- *i*). Express \overrightarrow{BE} and \overrightarrow{CF} in terms of *a* and *b ii*). If $\frac{EX}{EB} = \lambda$ $\frac{EX}{EB} = \lambda$ and $\frac{FX}{FC} = \mu$ *FX* by considering the triangles *AFX* and *AEX* obtain two different expressions for *AX*

iii). Hence find the values of λ and μ .

.

iv).Show that *X* divides the side *BE* in the ratio 2 : 1.

- 38).*OAB* is a triangle. The position vectors of *A* and *B* relative to O are *a* and *b* respectively. Point *D* lies on *OA* such that *OD:DA =2:1*. Point *E* lies on *OB* such that *OE : EB = 1:3*. The lines *BD* and *AE* intersect at *G*. Show that,
- i). BG : GD = 9 :1 iii). AG : GE = 2 : 3 iii). $BG = \frac{3}{5}a \frac{7}{10}b$ $\frac{a}{a} - \frac{9}{b}$ *5* $\overrightarrow{BG} = \frac{3}{4}a$ iv). $AG = \frac{2}{5} \left(\frac{6}{4} - a \right)$ $\left(\frac{b}{4}-a\right)$ $=\frac{2}{5}\left(\frac{b}{2}-a\right)$ *4 b 5* $\overrightarrow{AG} = \frac{2}{5} \left(\frac{b}{4} - a \right)$ v). $\overrightarrow{OG} = \frac{6a + b}{10}$ $=\frac{94}{10}$
- 39).*OAB* is a triangle. The position vectors of *A* and *B* relative to O are *a* and *b* respectively. Point *P* is on *OA* such that *OP*: $PA=2$:*l* and *Q* is on *OB* such that $OQ:QB=1:3$. The lines AQ and BP meet at point *R*. Find \overrightarrow{OR} in two ways and hence find ratios *AR : RQ* and *BR : RP.* Find *OR* only in terms of *a* and *b* .
- 40)*.i.*The position vectors of the points *P, Q* relative to the orgin O are *p* , *q* respectively. Show that the position vector $r \neq r$ of any variable point *R* on the line *PQ* can be writen as $r = p + \lambda(q - p)$ where λ is a parameter. *OACB* is a parallelogram. The sides \overrightarrow{OA} , \overrightarrow{OB} represent the vectors *a* and *b*. L, M are the mid points of *AC* and *CB*.

OL and *AM* intersect at *X*. Show that
$$
\overrightarrow{OX} = \frac{4}{5} \left(\frac{a}{2} + \frac{b}{2} \right)
$$
. *CX* and *OA* meet at *N*. Show that $\overrightarrow{ON} = \frac{2}{3} \frac{a}{2}$.

 ii. The median *AD* of a triangle *ABC* is bisected at *E* and *BE* is produced to meet the side *AC* in *F*.

Prove that
$$
AF = \frac{1}{3}AC
$$
 and $EF = \frac{1}{4}BF$.

41). The vectors \underline{a} and \underline{b} are two non - zero, non - parallel vectors. When α, β are scalars, if $\alpha \underline{a} + \beta \underline{b} = \underline{0}$, then show that $\alpha = 0$, $\beta = 0$.

 $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ C is a point such that $\overrightarrow{OC} = \underline{a} + \underline{b}$. P is the midpoint of BC. Then show that $OP = \frac{1}{2}(\underline{a} + 2\underline{b})$ $\overrightarrow{OP} = \frac{1}{2}(\underline{a} + 2\underline{b})$. If the line OP meets *AB* at *R*, show that $RB = b - k(a + 2b)$. Where k is a scalar. Show also that $AR : RB = 2 : 1$. 42).*A* and *B* are two points such that $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. The mid point of *OA* is *M*. *X* is a point on *OB* such that *OX : XB* = 3 : 1 and *Y* is a point on *AX* so that *AY* : $YX = 4$: 1.

- i). Express \overrightarrow{OM} , \overrightarrow{OX} and \overrightarrow{OY} interms of *a* and *b*.
- ii). Show that $BY = \frac{1}{5}(\underline{a} 2\underline{b})$ $\overrightarrow{BY} = \frac{1}{5}(\underline{a} -$
- iii). Show that *B*, *Y* and *M* are collinear iv). Show that $BY: YM = 2:3$

43). *ABCD* is a parallelogram. *L* and *M* are points on *BC* and *DC*, such that $\frac{DE}{LC} = \frac{EM}{MC} = \frac{1}{2}$. $=\frac{DM}{\sqrt{1-\frac{1}{2}}}=\frac{1}{2}$ *MC DM LC BL AL* and *BD* intersect at *P* and *AM* and *BD* intersect at *Q*.

Find the ratios $AP : PL$ and $DQ : QB$ and hence show that $PQ = \frac{1}{2}BD$ $=\frac{1}{2}BD$.

- 44). The position vectors of the points *P* and *Q* relative to a fixed origin are 2*a* and 2*b* respectively. *S* and *R* are the mid-points of *OP* and *OQ* respectively. *SQ* and *PR* meet at *X*. If *SX* : *SQ* = m and *RX* : *RP* = *n* then show that $OX = \underline{a} + m(2\underline{b} - \underline{a}) = b + n(2\underline{a} - \underline{b})$. Hence find the values of *m* and *n*.
- 45).(i) Let <u>a</u> and <u>b</u> be two non-zero, non-parallel vectors. If $\alpha \underline{a} + \beta \underline{b} = 0$ Where α and β are two scalars, show that $\alpha = 0$ and $\beta = 0$.
- (ii) *O, A, B* are three non-collinear points so that $OA = \underline{a}$ and $OB = \underline{b}$ points *P, Q* are such that 2 $\overrightarrow{OQ} = \frac{a}{2}$ and

b b $\overrightarrow{QP} = \frac{a}{2}$ $=\frac{2|b|}{2|b|}b$. Express \overrightarrow{OP} and \overrightarrow{PA} in terms of <u>*a*</u> and <u>*b*</u>, and deduce that,

(i)
$$
\underline{a} = \overrightarrow{OP} + \overrightarrow{PA}
$$
 (ii) $\underline{b} = \frac{|\underline{b}|}{|\underline{a}|} (\overrightarrow{OP} - \overrightarrow{PA})$

46). In triangle *OAB* the position vectors of *A* and *B* relative to origin *O* are *a* and *b* respectively. Points *D* and *E* are on *OB* and *OA* such that *OD : DB* = 5 : 2 and *OE : EA* = 3 : 4. The lines *AD* and *BE* intersect at *G..*

When λ is a scalar, show that $OG = \underline{b} + \lambda \left[\frac{3a}{7} - \frac{b}{7} \right]$ $\overline{}$ $\overline{\mathsf{L}}$ $\overrightarrow{OG} = \underline{b} + \lambda \left| \frac{3\underline{a}}{5} - \underline{b} \right|$ 7 $\lambda \left| \frac{3a}{2} - b \right|$.

Write down another expression for OG . Find scalars involving in them. Express \overrightarrow{OG} interms of <u>*a*</u> and <u>*b*</u>.

- 47).*i*. Position vectors of two points *P* and *Q* relative to a point *O* are *p* and *q* respectively. Show that the position vector of any point on the line *PQ* is $tp + (1-t)q$. Where *t* is a parameter. <u>*a*</u> and <u>*b*</u> are two non-parallel vectors. The position vectors of points *A, B, C* and *D* are *a*, 2*b,* 2*a* and 3*b* respectively. Show that the position vector of point of intersection of *AB* and *CD* is $2(3b - a)$.
- *ii*..Relative to an origin O the position vectors of the points *A, B* are *a* and *b* . Show that the vector equation of the line AB is $\underline{r} = \underline{a} + t(\underline{b} - \underline{a})$.

If the position vectors of *C*, *D* are $\frac{2}{2}$, $\frac{1}{2}$ $\frac{3}{2}$ 2 *a b* . Find the position vector of the intersection of *AB* and *CD.*

48). *Q* is the point on the side *AB* nearer to *B* which trisects *AB* of the triangle *OAB*. *P* is a point on *OQ* such that *OP :* $OQ = 2$: 5. The line *AP* produced meets *OB* at *R*. Show that $OP = \frac{2}{15}(a+2b)$ 15 $=\frac{2}{15}(\underline{a}+2\underline{b})$ and write down \overrightarrow{AP} interms of *a* and *b* . Where *a* and *b* are the position vectors of *A* and *B* respectively, relative to *O*.Find the value of

scalar *k* so that $OA + kAP$ is independent of \underline{a} . By expressing the position vector \underline{r} of *R* interms of \underline{b} and show that $OR : OB = 4 : 13$.

49). *ABC* is a triangle $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$, $\overrightarrow{OC} = \underline{c}$. Where *O* is a fixed point. Point *Q* is in the triangle such that *AQ, BQ, CQ* produced meet the sides *BC, CA*, *AB*, at *X, Y, Z* respectively.

If $\overline{XC} = \overline{2}$ $=\frac{1}{2}$ *XC BX* and $\overline{QA} = \overline{2}$ $=\frac{3}{2}$ *QA XQ* , prove that $15OQ = 9a + 4b + 2c$ Find the ratio *AY* : *YC*.

50). *A, B, C* are three non-collinear points. $\overrightarrow{AB} = \underline{b}$, $\overrightarrow{AC} = 3\underline{a}$. Point *D* is situated such that $AD = 3\underline{a} + \underline{b}$. *E* is on *CD* such that $DE : EC = 1:2$. Show that $AE = \frac{1}{2}(9a + 2b)$ 3 $=\frac{1}{2}(9a+2b)$. The lines BC and AE intersect at *F*. If λ is a constant, show that $FB = \underline{b} - \lambda (9a + 2\underline{b})$. Prove also that $FB : CF = 3 : 2$.

51). *A, B, C* points are such that $\overrightarrow{AB} = \underline{a}$ and $\overrightarrow{AC} = \underline{b}$. Point *E* is on *BC* such that *BE* : $EC = \underline{k}$: 1. Point *F* is on *AE* . *CF* produced meets *AB* at *H* and *BF* produced meets *AC* at *L*. If *AH : HB* = 3*k* : 1 and *CL : LA* = 2*k* : 1 . Prove that $(1+k)\overrightarrow{AE} = \underline{a} + k\underline{b}$ and $(1+2k+6k^2)\overrightarrow{AF} = 6k^2\underline{a} + \underline{b}$ Deduce that $6k^3 = 1$.

52). The position vectors of *P* and *Q* are *a* and *b*. Find the position vector of point *R* which divides *PQ* in the ratio 3 : 2. The position vectors of points *S* and *T* are 2*a* and 5 $\frac{9b-14a}{2}$. Show that the points *R*, *S*, *T* are collinear. Also find the ratio *R* divides the line *ST*.

- 53). In the triangle *OAB*, $\overrightarrow{OA} = 2a$ and $\overrightarrow{OB} = 3b$, *C* is the midpoint of *OA* and *D* is the point on *OB* such that *OD : DB* = 2 : 1. *OD* and *BC* meet at *E*.
	- (*a*) Express *AD* and *CB* in terms of *a* and *b.*

(*b*) By expressing \overrightarrow{OE} in the form $\lambda \underline{a} + \mu \underline{b}$ in two different ways, prove that E is the midpoint of *BC*.

- 54). *O, A, B* and *C* are four points such that $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = 2\underline{b}$ and $\overrightarrow{OC} = 6\underline{a} 2\underline{b}$ show that *A, B* and *C* are collinear.
- 55). The four points *O, A, B* and *C* are such that $\overrightarrow{OA} = \underline{a} \ \overrightarrow{OB} = \underline{b}$ and $\overrightarrow{OC} = k\underline{a} \cdot \underline{b}$. Given that *A, B* and *C* are collinear, find the value of *k*.

56). *OAB* are three points such that $OA = 2a$ and $OB = b$. *C* is the midpoint of *OA* and *OB* is produced to *D* such that

- $BD = OB$. *E* is a point on *CD* such that *CE* : $ED = 1:2$. Find *AB*, *CD* and *AE* in terms of <u>*a*</u> and <u>*b*</u>. and prove that *A, E* and *B* are collinear.
- 57). The medians *BE* and *CF* of the triangle *ABC* intersect at *G*. Given that

 \overrightarrow{AB} = 2*a* and \overrightarrow{AC} = 2*b*,

(*a*) express \overrightarrow{BE} and \overrightarrow{CF} in terms of *a* and *b*.

(*b*) expressing \overline{AG} in the form $k\underline{a} + m\underline{b}$ in two different ways, prove that *G* divides each median in the ratio 1 : 2

- 58). *ABCD* is a trapezium in which *AB* is parallel to and half *DC*. The diagonals *AC* and *BD* intersect at *E*. Given that $AB = p$ and $BC = q$ express AC and BD in terms of p and q and find the ratio in which E divides *AC*.
- 59). *ABCD* is a parallelogram in which *E* and *F* are the midpoints of *AB* and *CD* respectively. *AF* and *CE* intersect the diagonal *BD* at *X* and *Y.* Using vectors, show that the points *X* and *Y* trisect the diagonal *BD .*
- 60). *P, Q* and *R* are points on the sides *AB, BC* and *CA*, respectively, of a triangle *ABC* such that *AP : PB* = 1:2, *BQ:QC* = 2:3 and *CR:RA* = 3:1. *BR* and *CP* meet at *X*. Given that $\overrightarrow{AP} = \underline{a}$ and $\overrightarrow{AR} = \underline{b}$, find \overrightarrow{AO} , \overrightarrow{BR} , \overrightarrow{CP} and *AX* in terms of *a* and *b* and show that *AP, BQ* and *CR* are concurrent.
- 61). The sides *AD* , *AB* of the parrallelogram represent the vectors *a* and *b* respectively.The point *E* is on *DC* and *F* is on *BC* such that *DE:EC=1:2* and *BF:FC=2:1* respectively. *DF* and *AE* intersect at *K.* Show that $10AK = 3(3a + b)$ If CK and AD intersect at H, show that $7\overrightarrow{AH} = 6a$
- 62). Let the points $A = (-2,1)$, $B = (1,3)$, $C = (1,-1)$. Find the position vectors of the points *A*, *B* and *C*. Also find the vectors \overrightarrow{AB} , \overrightarrow{BC} \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} $\overline{}$. Hence find the lengths of the sides of the triangle *ABC*.

63). Let
$$
\overrightarrow{OA} = 7\underline{i} + 10\underline{j}
$$
, $\overrightarrow{OB} = 4\underline{i} + 5\underline{j}$, $\overrightarrow{OC} = 2\underline{i} - \underline{j}$. Find
 $i. |\overrightarrow{OA} + \overrightarrow{OB}|$ $ii. |\overrightarrow{OA} - \overrightarrow{OC}|$ $iii. |\overrightarrow{3OA} - 2\overrightarrow{OB}|$

64). The position vector of the point *P* is $12 \textit{i} + 5 \textit{j}$. Find

i.The distance to *P* from *O*

 $i \cdot \overrightarrow{AB}$

ii.unit vector in the direction *OP* \overrightarrow{OP} .

iii.The vector of size 26 in the direction *OP* \overrightarrow{OP} .

iv.The angle *OP* makes with (+) *X*-axis.

65). The position vectors of the points *A* and *B* are $\underline{i} + 2j$ and $3\underline{i} - 4j$ respectively. Find

 ii. *AB* $\overline{}$ *iii*.unit vector in the direction *AB* $\overline{}$

iv. The vector of size 98 in the direction of \overrightarrow{AB}

*v.*The angles *AB* makes with *X* and *Y* axes

66).Let $AB = (\lambda - 1)\underline{i} + (2\lambda + 1)j$. $\overrightarrow{AB} = (\lambda - 1)\underline{i} + (2\lambda + 1)j$. find minimum of \overrightarrow{AB} \overrightarrow{AB} and corresponding value of λ .

67). Relative to *O*, the position vectors of the points *A* and *B* are α and *b* respectively. where

 $\underline{a} = 3\underline{i} - \underline{j}$, $\underline{b} = \lambda(\underline{i} + 2\underline{j})$. Find AB \overrightarrow{AB} . Also find the minimum value of \overrightarrow{AB} \overrightarrow{AB} and corresponding value of λ .

68). Let $\underline{a} = \underline{i} - 2\underline{j}$ and $\underline{b} = -3\underline{i} + \underline{j}$. If the vector $\underline{a} + \lambda \underline{b}$ is parallel to $-\underline{i} - 3\underline{j}$, find the value of λ .

69). Given that $\underline{a} = 2\underline{i} - j$, and $\underline{b} = \underline{i} + j$.

i. If $a + \lambda b$ is parallel to the direction of <u>*i*</u> find the value of λ .

- *ii*. If $\mu \underline{a} + \underline{b}$ is parallel to the direction of *j*, find the value of μ .
- 70). The position vectors of the the points*A* and *B* relative to an origin O are *a* and *b* respectively. The point *C* is
- situated such that $OC = a + 2b$. The mid- point of *BC* is *D*. Show that $2OD = a + 3b$. if the lines *OD* and *AB* intersect at *E*, show that $AE:EB = 3:1$.
- 71). (i) If $a = \underline{i} 2j$, $b = 4\underline{i}$ and $c = 3\underline{i} j$ find $\underline{a} + \underline{b} + \underline{c}$ and the unit vector along $\underline{a} + \underline{b} + \underline{c}$.
	- (ii) *A, B, C* are three points on *OXY* plane. Where *O* is the vector origin such that $\overrightarrow{OA} = 2j$, $\overrightarrow{OB} = -\underline{i} + 5j$, $\overrightarrow{OC} = 2\underline{i} + 4j$. Find \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} and hence show that *ABC* is an isoscelles triangle.
- 72). If $OA = i + 3j$, $OB = 2i + 4j$, $OC = 5i + 4j$. Find,

(i)
$$
\left| \overrightarrow{OA} + \overrightarrow{OB} \right|
$$
 (ii) $\left| \overrightarrow{AB} + \overrightarrow{BC} \right|$ (iii) $\left| \overrightarrow{AB} - \overrightarrow{AC} \right|$

- 73). If $OA = i + 2j$, $OB = 3i j$, $OC = -i + 5j$. Find *AB* and *CA*. Hence show that *A, B, C* are collinear.
- 74). Three points *A, B, C* are such that

 $OA = 2i + 3j$, $OB = 6i + 6j$, $OC = i$. Where *O* is the origin. Find \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} . Hence find the length of the sides of the triangle *ABC*.

75). (i) Relative to an origin *O*, if $A = (1, -2)$ and $AB = 2i + 3j$, where *B* is a point, find coordinates of *B*.

(ii) If $\underline{a} = 3\underline{i} + \alpha j$ and unit vector along \underline{a} is 5 $i + 2j$ find α .

(iii) If u is a unit vector on *OXY* plane making an angle α with *X* axis, state u in cartisian form.

76).The coordinates of the points *A, B, C* are *(0, 4), (4, 10), (7, 8)* respectively. If the unit vecors along *X* and *Y* axes are *i*, *j* respectively, find interms of *i*, *j* the vectors $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$. Hence show that the triangle *ABC* is a right angled triangle.

77) (i)
$$
OA = i + 3j
$$
, $OB = 2i + 4j$, $OC = 5i + 4j$. Find
\n(i) $|OA + \overrightarrow{OB}|$ (ii) $|AB + \overrightarrow{BC}|$ (iii) $|AB - \overrightarrow{AC}|$
\n(ii) If $\overrightarrow{OA} = i + 2j$, $\overrightarrow{OB} = 3i - j$, $\overrightarrow{OC} = -i + 5j$ find \overrightarrow{AB} and \overrightarrow{CA} . Hence show that *A*, *B*, *C* are collinear.

(iii) If $\underline{a} = 2\underline{i} + 3j$, $\underline{b} = i + 5j$, $\underline{c} = a + 2\underline{b}$

(*a*) Find unit vector along *c* .

(*b*) If α , β are the position vectors of *A* and *B*, then find position vector of *R* on *AB* such that *AR* : $RB = 3 : 2$.

78). In the triangle *ABC*, the position vectors of *A*, *B*, *C* are $\underline{a} = 3\underline{i} + 4j$, $\underline{b} = i + j$, $\underline{c} = 10i$ respectively. (i) Find the length of the median *AD.*

(ii)Find the position vector of the centroid of the triangle.

79). Side of a square OABC is 2a. The unit vectors along OA, OC are i, j . The mid points of AB and BC are L,M. OL and AM intersect at P and BP and OA intersect at N. When λ and μ are scalars. Show that,

i).
$$
OP = \lambda(2ai + aj)
$$

ii). $OP = 2ai + \mu(-ai + 2aj)$

Show by finding λ , μ that $ON = \frac{2}{3}OA$ $=\frac{2}{3}$

80).*ABCD* is a rectangle with $AB = 2a$, $AD = a$. The mid points of *BC* and *CD* are *E* and *F*. The unit vectors along *AB* and *AD* are i , j . If the lines *AE*, *BF* intersect at *P*, when λ and μ are scalars show that,

- *i*). $AP = \lambda | 2a\underline{i} + \frac{\lambda}{2} \underline{j} |$ J $\left(2ai+\frac{a}{2}\underline{j}\right)$ $\overrightarrow{AP} = \lambda \left(2a\underline{i} + \frac{a}{2} \underline{j} \right)$ 2 λ 2
- *ii*). $AP = 2a\underline{i} + \mu(-a\underline{i} + a\underline{j})$

Hence find λ and μ obtain *AP:PE* and *BP:PF*

81).*OABC* is a rectangle. $OA = a$, $OC = b$. The unit vectors along *OA* and *OC* are <u>*i*</u> and *J* respectively. *D* is a point on *CB* such that 3 2 *CD* $\frac{CD}{DB} = \frac{3}{2}$. *OD* and *CA* intersect at *E*. The *BE* produced meets *OC* at *F*.

i. Express *OD* \overrightarrow{OD} in terms of <u>*i*</u> and *j*

ii. Express *OE* \overrightarrow{OE} in terms of <u>*i*</u> and <u>*j*</u> *iii*.Express \overrightarrow{CA} \overrightarrow{CA} in terms of <u>*i*</u> and *j*

iv. Hence by finding *CE* \overrightarrow{CE} , by the triangle *OCE* express \overrightarrow{OE} \overrightarrow{OE} .

v. Using (*ii*) and (*iv*) results obtain *OE* $\frac{1}{ED}$ and *CE* $\frac{E}{EA}$.

VECTOR DOT PRODUCT (Scalar Product)

82).*i*. a, b, c are mutually perpendicular vectors of equal magnitude. Show that $a + b + c$ is equally inclined to a, b, c .

ii. Prove that in usual notation for any triangle *ABC*

a) $a = b\cos C + c\cos B$

b)
$$
\cos A = \frac{b^2 + c^2 - a^2}{2bc}
$$

83). Using vector dot product prove that the altitudes of a triangle are concurrent.

84). Find λ such that $\underline{a} = 2\underline{i} + 3j$ perpendicular to $\underline{b} = \lambda \underline{i} + 5j$.

85). Let *A* (1,2) ,*B*(3,3) and *C*(2,5) be the vertices of a triangle.Find the position vectors of *A,B,C* in terms of *i* and *j* . Find *AB* , *AC* and lengths of the sides *AB* and *AC.* Hence find the angle between *AB* and *AC*.

86). If the dot product of a vector with the vectors $-i+j$ and $4i+3j$ are 1 and 17 respectively, find the vector.

87). If $|a| = 3$ $|b| = 1$ $|c| = 4$ and $a + b + c = 0$. Show that $a \cdot b + b \cdot c + c \cdot a = -13$.

88). If $\underline{a} + \underline{b} + \underline{c} = \underline{0}$ and $|\underline{a}| = 3$ $|\underline{b}| = 5$ $|\underline{c}| = 7$, Show that the angle between \underline{a} and \underline{b} is 60°

89). Two vectors <u>a</u> and <u>b</u> are such that $(a + b) \cdot (a - b) = 0$ show that $|a| = |b|$.

90). *a* and *b* are two vectors perpendicular to each other. Prove that $\left| \underline{a} + \underline{b} \right|^2 = \left| \underline{a} - \underline{b} \right|^2$. 91). \hat{a} and \hat{b} are unit vectors and θ is the angle between them. Show that $\sin \frac{\theta}{2} = \frac{1}{2} \left| \hat{a} - \hat{b} \right|$ 2 1 2 $\sin \frac{\theta}{2} = \frac{1}{2} \left| \hat{a} - \right|$.

92). Find \underline{a} and \underline{b} if $(\underline{a} + \underline{b}) \cdot (\underline{a} - \underline{b}) = 12$ and $\underline{a} = 2|\underline{b}|$.

93). Show that $\frac{|a|b^2}{|b|a}$ is perpendicular to $\frac{|a|b^-|b|a}{|b|}$, for any two non-zero vectors $\frac{a}{|b|}$ and $\frac{b}{|b|}$.

94). If $\underline{a} + \underline{b} + \underline{c} = 0$, show that the angle θ between the vectors \underline{b} and \underline{c} is given by

$$
\cos \theta = \frac{|{\underline{a}}|^2 - |{\underline{b}}|^2 - |{\underline{c}}|^2}{2|{\underline{b}}||{\underline{c}}|}.
$$

95). A parallelogram is constructed on the vector $\underline{a} = 3p - q$ and $\underline{b} = p + 3q$. Given that $|p| = |q| = 2$ and the angle between \underline{p} and \underline{q} is $\frac{\pi}{3}$ π . show that lengths of the diagonals are $4\sqrt{7}$ and $4\sqrt{3}$.

96). Using vector method, show that the diagonals of a rhombus bisect each other at right angles.

- 97). The position vectors of the vertices of a triangle are 0, a, b . Show that its area Δ given by $4\Delta^2 = |\underline{a}|^2 |\underline{b}|^2 - (\underline{a}.\underline{b})^2$.
- 98). \underline{a} , \underline{b} , \underline{c} be three vectors of length 3,4,8 respectively. Let \underline{a} be perpendicular to $\underline{b} + \underline{c}$, \underline{b} to $\underline{c} + \underline{a}$, \underline{c} to $\underline{a} + \underline{b}$. Find the length of the vector $\underline{a} + \underline{b} + \underline{c}$.

99). Using vector dot product

i) Prove that the angle in a semi-circle is a right angle.

ii) Prove that the mid-point of the hypotenuse of a right- angled triangle is equidistant from its vertices.

iii) Prove the pythagorian theorem.

iv) Prove that the perpendicular bisectors of the sides of a triangle are concurrent.

100). $r = a + \lambda b$ is the equation of a straight line. Where *b* is the unit vector in the direction of the line. Prove that the equation of the line through the origin perpendicular to the given line is $r = \mu |a - (a, b)b|$. Where μ is a real parameter. Also show that the perpendicular distance of first line from the origin is

2 1 $\left| \frac{a}{2} - (\underline{a}.\underline{b})^2 \right|^2$.

101) *i*.If $|\underline{a}| = 10$, $|\underline{b}| = 20$, and angle between <u>a</u> and <u>b</u> is 120° find <u>a</u> . b. *ii*.using distributive law show that

a.
$$
(\underline{a} + \underline{b}).(\underline{a} + \underline{b}) = |\underline{a}|^2 + 2(\underline{a}.\underline{b}) + |\underline{b}|^2
$$

b. $(\underline{a} - \underline{b}).(\underline{a} - \underline{b}) = |\underline{a}|^2 - 2(\underline{a}.\underline{b}) + |\underline{b}|^2$

102).simplify the following.

i. $(2a + b) \cdot (3a + 4b)$ *ii*. $(5a + b) \cdot (a - 2b)$ *iii*. $2a \cdot (3b - 2a)$.

103). Let <u>a</u> and <u>b</u> be any two vectors. The vectors $(a + b)$ and <u>a</u> are perpendicular to each other. If $|b| = \sqrt{2} |a|$ show that $(2a + b)$ and *b* are perpendicular to each other.

104). $|\underline{a}| = 4$, $|\underline{b}| = 10$ and the angle between <u>a</u> and <u>b</u> is 60°. Find the angle between the vectors $(\underline{a} + \underline{b})$ and $(\underline{a} - \underline{b})$.

105) Let $|\underline{a}| = 5$, $|\underline{b}| = 12$ and the angle between <u>a</u> and <u>b</u> is 30°. Find *i*. $(2a+3b)(a-b)$ *ii*. *a* $(5a+b)$

106). Find *a b* for the following

$$
\begin{array}{ccc}\n\underline{a} = 2\underline{i} + 5\underline{j} & \underline{a} = (2\underline{i} - 3\underline{j}) & \underline{a} = (4\underline{i} - 5\underline{j}) \\
\underline{i} \cdot \underline{b} = \underline{i} + 4\underline{j} & \underline{i} \cdot \underline{b} = (7\underline{i} + \underline{j}) & \underline{ii} \cdot \underline{b} = (2\underline{i} + 11\underline{j})\n\end{array}
$$

107).Find the angle between *a* and *b* .

108). *i*. The angle between the vectors $(3\underline{i} - \underline{j})$ and $(2\underline{i} + \lambda \underline{j})$ is $\frac{\pi}{4}$. Find λ .

ii.If the vectors $(4\underline{i} - 3\underline{j})$ and $(\lambda \underline{i} + 2\underline{j})$ are perpendicular to each other, find λ .

iii. Relative to a vector origin *O*, the position vectors of *A* and *B* are $(2\underline{i} - 3j)$ and $(-4\underline{i} - j)$ respectively. Find the area of the triangle *OAB*.

109). The vectors <u>a</u> and <u>b</u> are unit vectors. The vector $a + b$ is also unit vector.

i.Show that the angle between <u> α </u> and <u>*b*</u> is $\frac{2}{\alpha}$ 3 $\frac{\pi}{2}$.

ii.Also show that $|a-b| = \sqrt{3}$.

110.In the usual notation, let ι and $\iota + \iota$ be the position vectors of two points *A* and *B* respectively, with respect to a fixed origin *O*. Also, let *C* be a point on the straight line through *A* parallel to *OB*. Show that $OC = (1 + \lambda)i + \lambda j$, where λ is a real number.

Find the value of λ such that *BC* is perpendicular to *OB*.

111.In the usual notation, the position vectors of two points *A* and *B* with respect to an origin *O*, are $\lambda \underline{i} + \mu \underline{j}$ and $\mu \underline{i} - \lambda \underline{j}$ respectively, where λ and μ are real numbers such that $o < \lambda < \mu$. Show that \hat{AOB} is a right angle. Let *C* be the mid-point of the line segment *AB*. If the vector \overrightarrow{OC} is of magnitude 2 and it makes an angle $\frac{\pi}{6}$ with the unit vector *i*, find the values of λ and μ .

112. In the usual notation, let
$$
\underline{a} = 3\underline{i} + 4\underline{j}
$$
, $\underline{b} = 4\underline{i} + 3\underline{j}$ and $\underline{c} = a\underline{i} + (1 - \alpha)\underline{j}$, where $\alpha \in \mathcal{R}$.

Find i. $|a|$ and $|b|$,

ii. $a.c$ and $b.c$ in terms of α .

If the angle between \underline{a} and \underline{c} is equal to the angle between \underline{b} and \underline{c} , show that $\alpha = \frac{1}{2}$ $\alpha = \frac{1}{2}$.

113. In the usual notation, let $-i+2j$ and $2\alpha i + \alpha j$ be the position vectors of two points *A* and *B* respectively, with respect to a fixed origin *O*, where α (>0) is a constant. Using scalar product, show that $\angle AOB = \frac{\pi}{2}$. Let *C* be the point such that *OACB* is rectangle. If the vector \overrightarrow{OC} lies along the y-axis, find the value of α .

114. The position vectors of two distinct points *A* and *B* with respect to a fixed origin *O*, **not collinear** with *A* and *B*, are α and β respectively. Let β = $(1 - \lambda)\alpha + \lambda \beta$ be the position vector of a point *C* with respect to *O*, where $0 < \lambda < 1$.

Express the vectors \overrightarrow{AC} and \overrightarrow{CB} in terms of a, b and λ .

Hence, show that the point *C* lies on the line segment *AB* and that $AC : CB = \lambda : (1 - \lambda)$.

Now, suppose that the line *OC* bisects the angle *AOB*. Show that $|b|(a.c)=|a|(b.c)$ and hence, find λ .

115. In the usual notation, let $3i$ and $2i + 3j$ be the position vectors of two points *A* and *B* respectively, with respect to

a fixed origin *O*. Let *C* be the point on the straight line *OB* such that $O\hat{C}A = \frac{\pi}{2}$. Find \overrightarrow{OC} in terms of <u>*i*</u> and <u>*j*</u>.

116*.*Let *OAB* be a triangle, *D* be the mid-point of *AB* and *E* be the mid-point of *OD.* The point *F* lies on *OA* such that $OF: FA = 1:2$. The position vectors of *A* and *B* with respect to *O* are *a* and *b* respectively. Express the vectors \overrightarrow{BE} and \overrightarrow{BF} in terms of *a* and *b*.

Deduce that *B,E* and *F* are collinear and find the ratio *BE:EF.*

Find the scalar product $\overrightarrow{BF} \cdot \overrightarrow{DF}$ in terms of $|\underline{a}|$ and $|\underline{b}|$ and show that if $|\underline{a}| = 3|\underline{b}|$, then \overrightarrow{BF} is perpendicular to \overrightarrow{DF} .

117. In the usual notation, let $2i + j$ and $3i - j$ be the position vectors of two points *A* and *B*, respectively, with respect to a fixed origin *O*. Find the position vectors of the two distinct points *C* and *D* such that

$$
\angle AOC = A\hat{O}D = \frac{\pi}{2} \text{ and } OC = OD = \frac{1}{3}AB.
$$

118. Let *OACB* be a parallelogram and let *D* be the point on *AC* such that AD : $DC = 2:1$. The position vectors of points *A* and *B* with respect to *O* are λa and *b*, respectively, where $\lambda > 0$. Express the vectors \overrightarrow{OC} and \overrightarrow{BD} in terms of a, b and λ .

Now, let \overrightarrow{OC} be perpendicular to \overrightarrow{BD} . Show that $3|\underline{a}|^2 \lambda^2 + 2(\underline{a}.\underline{b})\lambda - |\underline{b}|^2 = 0$ and find the value of λ ,

if
$$
\left| \underline{a} \right| = \left| \underline{b} \right|
$$
 and $\widehat{AOB} = \frac{\pi}{3}$.

119. In the usual notation, let $\underline{i} + 2j$ and $3\underline{i} + 3j$ be the position vectors of two points *A* and *B* respectively, with respect to a fixed origin *O*.Also let *C* be the point such that *OABC* is parallelogram.Show that $OC = 2i + j$.

Let $\angle AOC = \theta$. $\overline{1}$ By considering *OA* .*OC* , show that $Cos \theta = \frac{1}{6}$. 5 $\cos\theta = \frac{4}{5}$

120.In the usual notation, the position vectors of four points *A, B, C* and *D* are

 $\underline{a} = -\underline{i} - \underline{j}, \underline{b} = \underline{i} + 4\underline{j}, \underline{c} = 8\underline{i} + \alpha \underline{j}$ and $\underline{d} = 4\underline{i} - 2\underline{j}$, respectively, where $\alpha \in \mathbb{R}$.

The lines *AB* and *DC* are parallel. Show that $\alpha = 8$.

 The lines *AC* and *BD* intersect at a point *E* with the position vector *e*. By considering *AE* \overrightarrow{AE} and \overrightarrow{AC} \overrightarrow{AC} , show that $\underline{e} = (1 - \lambda) \underline{a} + \lambda \underline{c}$ for $\lambda \in \mathbb{R}$.

Similarly, also show that $\underline{e} = (1 - \mu)\underline{b} + \mu \underline{d}$ for $\mu \in \mathbb{R}$.

 Hence find \underline{e} in terms of \underline{i} and \underline{j} .

By considering $\overrightarrow{EA} \cdot \overrightarrow{ED}$, find \overrightarrow{AED} $\overrightarrow{EA} \cdot \overrightarrow{ED}$, find \overrightarrow{AED} .

121. In the usual notation, the position vectors of two points A and B with respect to a fixed origin O are $3\underline{i} + 2\underline{j}$ and $2 \underline{i} + 4 \underline{j}$, respectively. Show that *O, A* and *B* are non - collinear. Let *C* be the point such that $BC = \lambda OA$ $\overrightarrow{BC} = \lambda \overrightarrow{OA}$, where $\lambda \in \mathbb{R}$. Find \overrightarrow{OC} in terms of \underline{i} , \underline{j} and λ . show that if $B\hat{O}$ 2 $\angle BOC = \frac{\pi}{2}$, then $\lambda = -\frac{10}{7}$ 7 $\lambda = -\frac{10}{7}$.

122.Let the position vectors of four points *A, B, C* and *D* be *a, b*, 3*a* and 4*b*, respectively with respect to a fixed origin *O*, where *a* and *b* are non - zero and non - parallel vectors. *E* is the point of intersection of *AD* and *BC*. Using the triangle law of addition for the triangle *OAE*, show that $OE = a + \lambda(4b - a)$ for $\lambda \in$ $\overrightarrow{OE} = a + \lambda(4b - a)$ for $\lambda \in \mathbb{R}$. Similarly, show also that $OE = b + \mu(3a - b)$ for $\mu \in$ $\overrightarrow{OE} = b + \mu(3a - b)$ for $\mu \in \mathbb{R}$.

Hence, show that $\overrightarrow{OE} = \frac{1}{11}(9\underline{a} + 8\underline{b})$. 11 $OE = \frac{1}{11}(9a + 8b)$ $\overrightarrow{OE} = \frac{1}{11}(9\underline{a} + 8\underline{b}).$

123.In the usual notation, the position vectors of two points *A* and *B*, with respect to a fixed origin *O* are $2i - 3j$ and $i = 2j$, respectively. Using \overrightarrow{AO} , \overrightarrow{AB} $\overrightarrow{AO} \cdot \overrightarrow{AB}$, find \overrightarrow{OAB} .

Let *C* be the point on *OA* such that $O\hat{C}$ 2 $\hat{OCB} = \frac{\pi}{2}$, Find \overrightarrow{OC} \overrightarrow{OC} .

124. Let \underline{a} and \underline{b} be non - zero and non - parallel vectors, and $\lambda, \mu \in \mathbb{R}$.

show that if $\lambda \underline{a} + \mu \underline{b} = \underline{0}$, then $\lambda = 0$ and $\mu = 0$.

 Let *ABC* be a triangle. The mid - point of *AB* is *D* and the mid - point of *CD* is *E*. The lines *AE* (extended) and *BC* meet at F. Let $AB = a$ and $AC = b$ $\overrightarrow{AB} = a$ and $\overrightarrow{AC} = b$. Using the triangle law of addition.

 show that 2 4 $\overrightarrow{AE} = \frac{\underline{a} + 2\underline{b}}{4}$ $=\frac{u}{u}$ $\overrightarrow{AE} = \frac{\underline{a} + 2\underline{b}}{4}$.

Explain why $AF = \alpha AE$ $\overrightarrow{AF} = \alpha \overrightarrow{AE}$ and $\overrightarrow{CF} = \beta \overrightarrow{CB}$ $\overrightarrow{CF} = \overrightarrow{\betaCB}$, where $\alpha, \beta \in \mathbb{R}$. Considering the triangle ACF, show that $(\alpha - 4\beta)\underline{a} + 2(\alpha + 2\beta - 2)\underline{b} = \underline{0}$. Hence, find the values of α and β .

125.In the usual notation, let $2i + j$ and $3i - j$ be the position vectors of two points *A* and *B*, respectively, with respect to a fixed origin *O*. Find the position vectors of the two distinct points *C* and *D* such that $\angle AOC = AOD = \frac{\pi}{2}$ $\angle AOC = \angle AOD = \frac{\pi}{2}$ and

$$
OC = OD = \frac{1}{3} AB.
$$

126. let *OACB* be a parallelogram and let *D* be the point on *AC* such that AD : $DC = 2:1$. The position vectors of points *A* and *B* with respect to *O* are $\lambda \underline{a}$ and <u>*b*</u>, respectively, where $\lambda > 0$. Express the vectors \overrightarrow{OC} $\overline{}$ and \overrightarrow{BD} in terms of <u>a</u>, <u>b</u> and λ .

 Now, let *OC* - be perpendicular to *BD* \overrightarrow{BD} . Show that $3|a|^2 \lambda^2 + 2(a \cdot b)\lambda - |b|^2 = 0$ and find the value of λ , if $|a| = |b|$ and ˆ 3 $\angle AOB = \frac{\pi}{2}$.

127. Let $\alpha > 0$ and in the usual notation, let $\underline{i} + \alpha \underline{j}$ and $\alpha \underline{i} - 2\underline{j}$ be the position vectors of two points *A* and *B*, respectively, with respect to a fixed origin *O*. Also, let *C* be the point on *AB* such that $AC : CB = 1:2$. It is given that *OC* is perpendicular to *AB*. Find the value of α .

128.Let α and β be two non-zero, non-parallel vectors. Show that $\alpha \alpha + \beta \beta = 0$ if and only if $\alpha = 0$ and $\beta = 0$. Relative to a vector origin O, the position vectors of the four points A, B C and D are $a, b, 2a + 5b$ and $3a + 2b$ respectively. Express *AC* and *BD* \overrightarrow{AC} and \overrightarrow{BD} in terms of <u>a</u> and <u>b</u>. Let *E* be the point of intersection of the lines *AC* and *BD*. Find the ratios AE : *EC* and BE : *BD*. using vector dot product, show that $\frac{3}{2}AE^2 - \frac{10}{8}$. $BE^2 = \frac{4}{7}(5|\underline{b}|^2 - 3|\underline{a}|^2)$. $\frac{3}{2}AE^{2}-\frac{16}{9}$. $BE^{2}=\frac{4}{7}(5|\underline{b}|^{2}-3|\underline{a}|^{2})$.

129. Relative to a vector origin *O*, the position vectors of the points *P* amd *Q*, are *p* and *q* respectively. The point *R* lies on *PQ* such that $PR : RQ = 2:1$. Show that the position vector of the point *R* is $\frac{1}{2}p + \frac{2}{2}$ $3^{\frac{r}{-}}$ 3 $p + \frac{2}{3}q$. A point *S* is on this plane such that *RS* and *RQ* are perpendicular to each other If it is given that $\underline{s} = p + q$, show that $p, q = 2|p|^2 - |q|^2$. Also when $k > 0$, if $p = 2i + j$ and $q = k \cdot i + 2j$, find *k*.

130. The triangle *ABC* is an isosceles such that $AC = BC$. The internal angle bisectors of the vertices *A* and *B* meet at the point *D*. Relative to a fixed vector origin *O*, the position vectors of the points *A*, *B* and *C* are $2a + b$, $3a - 5b$, and \underline{a} + 3 \underline{b} respectively. Where \underline{a} and \underline{b} are two non - zero, non parallel vectors. Find \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} . By using vector dot product show that $3|\underline{a}|^2 + 60|\underline{b}|^2 = 28(\underline{a}.\underline{b})$. Hence if the line *CD* produced, meets *AB* at *E*, Show that *CE* is perpendicular to *AB*. Let the mid point of *CE* be *G*. The line *AG* meets *CB* at *F*. Find the ratios *AG* : *GF* and *CF* : *FB*.

131. The position vectors of the points *A* and *B*, relative to a vector origin *O* are *a* and *b* respectively. Point *C* is on the line passing through *O* parallel to *AB*. Find the position vector of *C* so that *OABC* is a parallelogram. Let *D* be a point on *OC* produced and *E* is a point on *OB* so that *OE* : *EB* = 3 : 1. Find the position vector of *D* so that *A, E, D* are collinear and find the ratio AE : ED . It is given that $AB = \sqrt{5}$ (units) and $2OA = OB$.

 Show that $1 | 5(|a|^2)$ 2 $\hat{O}A = \cos^{-1} \left(\frac{5(|\underline{a}|^2 - 1)}{2} \right)$ 4 *a BOA a* $-1 \mid 5(|a|^2-1) \mid$ $=$ \cos^{-1} $\frac{\sqrt{|\mu|} + 1}{2}$ $\left[\begin{array}{cc}4|\underline{a}|^2\end{array}\right]$

.