

## UNIT 1-TUTORIAL 4: ATOMIC STRUCTURE

| 1. | 1. Which is not a property of cathode r  | ays?                                |                           |
|----|------------------------------------------|-------------------------------------|---------------------------|
|    | 1) They are attracted to the (+) 1       | plate when an electric field is app | plied along their path.   |
|    | 2) The e/m ratio of cathode rays         | s from different gases is constant  |                           |
|    | 3) There is an inclination toward        | ds the North Pole in a magnetic t   | field.                    |
|    | 4) They move in a straight line.         |                                     |                           |
|    | 5) The nature of cathode rays d          | loes not depend on the gas insid    | e the cathode ray tube or |
|    | the material it is made of.              |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
| 2. | 2. Who showed that the charge/mass       | ratio of a cathode ray particle de  | oes not vary with the gas |
|    | contained in the cathode ray tube?       |                                     |                           |
|    | 1) G.J. Stoney 2                         | ) Ernest Rutherford                 | 3) J.J. Thomson           |
|    | 4) R.A. Millikan 5                       | ) William Crookes                   |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
|    |                                          |                                     |                           |
| 3. | 3. Who among the following is the scient | entists who gave that name to the   | e "electron"?             |
|    | 1) William Crookes 2                     | ) Ernest Rutherford                 | 3) G.J. Stoney            |
|    | 4) Henri Becquerel 5                     | J.J. Thomson                        |                           |
|    |                                          | 1                                   |                           |

|    | •••••••••                      | •••••                          |                                        |
|----|--------------------------------|--------------------------------|----------------------------------------|
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
| 4. | The scientist who named the    | basic unit of electricity as ' | 'electron" is.                         |
|    | 1) J.J. Thomson                | 2) Rutherford                  | 3) Stoney                              |
|    | 4) R.A. Millikan               | 5) Michael Faraday             | , <b>,</b>                             |
|    | •                              |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                | •••••                          |                                        |
|    |                                | •••••                          |                                        |
|    |                                |                                |                                        |
|    | •••••                          |                                |                                        |
|    |                                |                                |                                        |
| 5. | Who observed in the study      | of cathode rays that the na    | ture of cathode rays does not change   |
|    | regardless of the material the | e cathode is made of or the g  | gas in the tube?                       |
|    | 1) G.J. Stoney                 | 2) J.J. Thomson                | 3) William Crookes                     |
|    | 4) Ernest Rutherford           | 5) R.A. Millikan               |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                |                                |                                        |
|    |                                | •••••                          |                                        |
| 6  | Which of the Callerying state  |                                |                                        |
| 6. | S                              |                                |                                        |
|    | ,                              | thode rays are deflected per   |                                        |
|    | 2) A cathode ray is a beau     | am of particles with both ma   | ass and kinetic energy.                |
|    | 3) The nature of the cath      | node rays does not vary with   | the gas in the discharge tube but with |
|    | the material used for          | the eathede                    |                                        |

|    | •                                       | ot deflected in a magnetic fie       |                                  |           |
|----|-----------------------------------------|--------------------------------------|----------------------------------|-----------|
|    | 5) The e/m ratio of ca                  | athode rays from different gas       | es is different from each other. |           |
|    |                                         |                                      |                                  | •••••     |
|    |                                         |                                      |                                  | • • • • • |
|    |                                         |                                      |                                  | ••••      |
|    |                                         |                                      |                                  | ••••      |
|    |                                         |                                      |                                  | • • • • • |
|    |                                         |                                      |                                  | • • • • • |
| 7. | Which of the following st               | tatement is <b>true</b> about cathod | e rays?                          | ••••      |
|    | _                                       | the North Pole in a magnetic         |                                  |           |
|    | •                                       | the South Pole in a magnetic         |                                  |           |
|    | 3) Contains He nucle                    | _                                    |                                  |           |
|    | 4) Moves in a straigh                   |                                      |                                  |           |
|    | 5) Able to perform w                    | ork while traveling.                 |                                  |           |
|    | • • • • • • • • • • • • • • • • • • • • |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
| 8. | The term "electron" was                 | first introduced by,                 |                                  |           |
|    | 1) J.J. Thomson                         | 2) Moseley                           | 3) Rutherford                    |           |
|    | 4) Stoney                               | 5) Faraday                           |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |
|    |                                         |                                      |                                  |           |

| 9. The two scientists who discovered the radioactivity caused by the nuclei of certain elements | S |
|-------------------------------------------------------------------------------------------------|---|
| and the generation of positive rays in the cathode ray tube were respectively,                  |   |
| 1) Robert Millikan and Eugen Goldstein                                                          |   |
| 2) J.J. Thomson and Henri Becquerel                                                             |   |
| 3) Henri Becquerel and Eugen Goldstein                                                          |   |
| 4) Ernest Rutherford and J.J. Thomson                                                           |   |
| 5) Eugen Goldstein and Henri Becquerel                                                          |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
| 10. Consider statements I and II below.                                                         |   |
| I. Presenting the "golf ball model" as an atomic model.                                         |   |
| II. Providing experimental proof of the existence of positive charges in matter.                |   |
| The scientists who presented the facts mentioned in these I and II statements respectively are  | , |
| 1) J.J. Thomson and Eugen Goldstein                                                             |   |
| 2) Ernest Rutherford and John Dalton                                                            |   |
| 3) John Dalton and Eugen Goldstein                                                              |   |
| 4) John Dalton and James Chadwick                                                               |   |
| 5) Eugen Goldstein and Ernest Rutherford                                                        |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |
|                                                                                                 |   |

| 11. W  | ho of the follow                                       | ing scientists s                        | showed that the charge/m         | nass ration of a positiv                       | e ray particle  |
|--------|--------------------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------------|-----------------|
| va     | varies with the gas contained in the cathode ray tube? |                                         |                                  |                                                |                 |
|        | 1) E. Goldsteir                                        | 1                                       | 2) Ernest Rutherford             | 3) J.J. Tho:                                   | mson            |
|        | 4) R.A. Millika                                        | n                                       | 5) G.J. Stoney                   |                                                |                 |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                | •••••           |
|        |                                                        | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        |                                                        | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        |                                                        |                                         |                                  |                                                |                 |
|        |                                                        |                                         |                                  |                                                |                 |
|        |                                                        |                                         |                                  |                                                |                 |
|        |                                                        |                                         |                                  |                                                |                 |
| 12. Tł | ne mass of a prote                                     | on is given by,                         |                                  |                                                |                 |
|        | 1) 10 <sup>-22</sup> g                                 | 2) $10^{-25}$ g                         | $3) 10^{-13} g$                  | 4) $10^{-8}$ g                                 | 5) $10^{-24}$ g |
|        |                                                        |                                         |                                  |                                                |                 |
|        |                                                        | • • • • • • • • • • • • • • • • • • • • |                                  |                                                | •••••           |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        |                                                        | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        |                                                        | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
| 13. W  | hich of the follo                                      | wing statemen                           | ts about alpha (α) rays, b       | oeta (β) rays, and gam                         | ma (γ) rays is  |
| fa     | lse?                                                   |                                         |                                  |                                                |                 |
|        | 1) γ rays are no                                       | ot accelerated i                        | n an electric field.             |                                                |                 |
|        | 2) α particles a                                       | re positively c                         | harged.                          |                                                |                 |
|        | 3) α rays show                                         | more accelera                           | tion than $\beta$ rays in an ele | ctric field.                                   |                 |
|        | 4) Ernest Ruth                                         | erford discover                         | red that radioactive element     | ents release $\alpha$ , $\beta$ , and $\gamma$ | rays.           |
|        | 5) γ rays are a                                        | type of high er                         | nergy radiation.                 |                                                |                 |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        |                                                        | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        | •••••                                                  |                                         |                                  |                                                |                 |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        | •••••                                                  | • • • • • • • • • • • • • • • • • • • • |                                  |                                                |                 |
|        |                                                        |                                         |                                  |                                                |                 |

| 14. Who first represented a mode  | el of the nucleus of the atom?     |                                    |
|-----------------------------------|------------------------------------|------------------------------------|
| 1) Niels Bohr                     | 2) G.J. Stoney                     | 3) R.A. Millikan                   |
| 4) Ernest Rutherford              | 5) J.J. Thomson                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   | heses/discoveries related to atom  |                                    |
| I. Like the planets orbiting      | ng around the sun, the atomic nuc  | cleus is surrounded by electrons   |
| orbiting around it.               |                                    |                                    |
| II. The number of positiv         | e charges in the nucleus increases | s one electron unit at a time.     |
| The two scientists who ma         | ade the hypotheses/discoveries me  | entioned in I and II respectively, |
| 1) Eugen Goldstein and J.         | J. Thomson                         |                                    |
| 2) Niels Henrik David Bo          | hr and Henry Gwyn Jeffreys Mos     | seley                              |
| 3) Niels Henrik David Bo          | hr and J.J. Thomson                | •                                  |
| 4) J.J. Thomson and Euge          | n Goldstein                        |                                    |
|                                   | Ienry Gwyn Jeffreys Moseley        |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
|                                   |                                    |                                    |
| 16. The neutron was discovered by | by,                                |                                    |
| 1) J.J. Thomson                   | 2) James Chadwick                  | 3) Ernest Rutherford               |
| 4) William Aston                  | 5) Eugen Goldstein                 |                                    |
|                                   |                                    |                                    |

| • •     | • • • • • • • • • • • • • • • • • • • •                                                                                                       | • • • • • • • • • • • • • • • • • • • •                                                                                        | •••••                 |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               | •••••                                                                                                                          |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| 17. The | 17. The electron was discovered by,                                                                                                           |                                                                                                                                |                       |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                | 2) James Chadwick                                                                                                              | 3) Ernest Rutherford  |  |  |  |
| 4       | ) Eugen Goldstein                                                                                                                             | 5) John Dalton                                                                                                                 |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| •       |                                                                                                                                               | •••••                                                                                                                          |                       |  |  |  |
| •       |                                                                                                                                               | •••••                                                                                                                          |                       |  |  |  |
| •       |                                                                                                                                               | •••••                                                                                                                          |                       |  |  |  |
| •       |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
|         |                                                                                                                                               |                                                                                                                                |                       |  |  |  |
| 18. The | proton was discovered by,                                                                                                                     |                                                                                                                                |                       |  |  |  |
|         | proton was discovered by, ) J.J. Thomson                                                                                                      | 2) Ernest Rutherford                                                                                                           | 3) James Chadwick     |  |  |  |
| 1       | -                                                                                                                                             | <ul><li>2) Ernest Rutherford</li><li>5) Henri Becquerel</li></ul>                                                              | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1       | ) J.J. Thomson                                                                                                                                |                                                                                                                                | 3) James Chadwick     |  |  |  |
| 1 4     | ) J.J. Thomson ) Henry Moseley                                                                                                                | 5) Henri Becquerel                                                                                                             | 3) James Chadwick     |  |  |  |
| 1 4     | J.J. Thomson  Henry Moseley  sider the following findings 1                                                                                   | 5) Henri Becquerel                                                                                                             | 3) James Chadwick     |  |  |  |
| 1 4     | ) J.J. Thomson ) Henry Moseley                                                                                                                | 5) Henri Becquerel                                                                                                             | 3) James Chadwick     |  |  |  |
| 1 4     | J.J. Thomson  Henry Moseley  Sider the following findings reconducting experiments to Determination of e/m ratio                              | 5) Henri Becquerel  related to atomic structure. o find isotopes o of an electron.                                             | 3) James Chadwick     |  |  |  |
| 1 4 4   | J.J. Thomson  Henry Moseley  Sider the following findings to Conducting experiments to Determination of e/m ratio Discovery of the nucleus of | 5) Henri Becquerel  related to atomic structure.  o find isotopes o of an electron. of the atom.                               |                       |  |  |  |
| 1 4 4   | J.J. Thomson  Henry Moseley  Sider the following findings to Conducting experiments to Determination of e/m ratio Discovery of the nucleus of | 5) Henri Becquerel  related to atomic structure.  o find isotopes o of an electron. of the atom. ed to the discoveries mention | and III respectively, |  |  |  |

| 2       | 2) J.J. Thomson, Jo                     | hn Dalton, Ernest Rutherford                |                                       |
|---------|-----------------------------------------|---------------------------------------------|---------------------------------------|
| 2       | 3) William Aston, J                     | .J. Thomson, Henri Becquerel                |                                       |
| 2       | 4) William Aston, J                     | .J. Thomson, Ernest Rutherford              |                                       |
|         | 5) Eugen Goldstein                      | , J.J. Thomson, Geiger                      |                                       |
|         |                                         |                                             |                                       |
|         | • • • • • • • • • • • • • • • • • • • • |                                             |                                       |
| ,       |                                         |                                             |                                       |
|         | • • • • • • • • • • • • • • • • • • • • |                                             |                                       |
| •       |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
| 20. Con | sider statements I a                    | and II below.                               |                                       |
| I.      | Introducing the                         | name "electron" for the elementary          | particle of electricity.              |
| II.     | Finding the elec                        | tron's charge to be $1.602 \times 10^{-19}$ | C.                                    |
| The     | e scientists who pre-                   | sented the facts mentioned in these         | I and II statements respectively are, |
|         | 1) John Dalton and                      | J.J. Thomson                                |                                       |
|         | 2) G.J. Stoney and                      | R.A. Millikan                               |                                       |
|         | 3) G.J. Stoney and                      | William Crookes                             |                                       |
|         | 4) R.A. Millikan an                     | nd G.J. Stoney                              |                                       |
|         | 5) J.J. Thomson an                      | d James Chadwick                            |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
|         |                                         |                                             |                                       |
| 21. Wh  | ich of the followir                     | ng sets of numbers represents the           | number of protons, neutrons and       |
| elec    | etrons in the ${}^{18}_{8}O_2^{2-}$     | on?                                         |                                       |
|         | 1) 8, 10, 10                            | 2) 10, 20, 14                               | 3) 16, 20, 18                         |
| 4       | 4) 8, 10, 6                             | 5) 16, 14, 20                               |                                       |
| ,       |                                         |                                             |                                       |
| •       |                                         |                                             |                                       |

| •••••                                                      |                      |                                                                               |                                                  |                |
|------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|--------------------------------------------------|----------------|
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      | •••••                                                                         |                                                  |                |
| The number of elec                                         | etrons and neutrons  | s in the triple posit                                                         | ive ion of $^{52}_{24}Cr$ res                    | pectively are, |
| 1) 24 and 28                                               | 2)                   | 21 and 28                                                                     | 3) 27                                            | ' and 28       |
| 4) 28 and 21                                               | 5)                   | 21 and 25                                                                     |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  | ••••           |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
|                                                            |                      |                                                                               |                                                  |                |
| The number of elec                                         | etrons, neutrons, ar | nd protons in 81/A-1                                                          | ion respectively ar                              | e.             |
| The number of electron 1) 36, 18, 35                       |                      | _                                                                             |                                                  |                |
|                                                            |                      | and protons in <sup>81</sup> / <sub>35</sub> A <sup>-1</sup><br>3) 46, 35, 47 |                                                  |                |
|                                                            |                      | _                                                                             |                                                  |                |
| 1) 36, 18, 35                                              | 2) 37, 45, 36        | 3) 46, 35, 47                                                                 | 4) 34, 46, 35                                    | 5) 36, 46, 35  |
| 1) 36, 18, 35                                              | 2) 37, 45, 36        | _                                                                             | 4) 34, 46, 35                                    | 5) 36, 46, 35  |
| 1) 36, 18, 35                                              | 2) 37, 45, 36        | 3) 46, 35, 47                                                                 | 4) 34, 46, 35                                    | 5) 36, 46, 35  |
| 1) 36, 18, 35                                              | 2) 37, 45, 36        | 3) 46, 35, 47                                                                 | 4) 34, 46, 35                                    | 5) 36, 46, 35  |
| 1) 36, 18, 35                                              | 2) 37, 45, 36        | 3) 46, 35, 47                                                                 | 4) 34, 46, 35                                    | 5) 36, 46, 35  |
| 1) 36, 18, 35                                              | 2) 37, 45, 36        | 3) 46, 35, 47                                                                 | 4) 34, 46, 35                                    | 5) 36, 46, 35  |
| 1) 36, 18, 35* Follow the instruction                      | 2) 37, 45, 36        | 3) 46, 35, 47                                                                 | 4) 34, 46, 35ber 24 to 31.                       | 5) 36, 46, 35  |
| 1) 36, 18, 35* Follow the instruction (1)                  | 2) 37, 45, 36        | 3) 46, 35, 47  y for question numl  (3)                                       | 4) 34, 46, 35  ber 24 to 31.  (4)                | 5) 36, 46, 35  |
| 1) 36, 18, 35* Follow the instruction                      | 2) 37, 45, 36        | 3) 46, 35, 47  y for question numl  (3)                                       | 4) 34, 46, 35ber 24 to 31.                       | 5) 36, 46, 35  |
| 1) 36, 18, 35* Follow the instruction (1) Only (a) and (b) | 2) 37, 45, 36        | 3) 46, 35, 47  for question num  (3)  Only (c) and (d)                        | 4) 34, 46, 35ber 24 to 31.  (4) Only (d) and (a) | 5) 36, 46, 35  |

- 24. Cathode ray particles are,
  - a) negatively charged.
  - b) attracted to the N-pole of a magnet.

| c) attracted to the negative electrode in an external electric field.                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d) move along a straight path.                                                                                                                                          |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| 25. Which of the following is <b>true</b> about the factors on which the charge/mass ratio of cathode                                                                   |
| rays depends?                                                                                                                                                           |
| a) It does not depend on the metal the cathode is made of.                                                                                                              |
| b) Does not depend on the gas in the discharge tube.                                                                                                                    |
| c) Depends on the potential gap applied across the discharge tube.                                                                                                      |
| d) Depends on the pressure in the discharge pipe.                                                                                                                       |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| 26 Which of the fellowing is folgon beaut mand 0 mans?                                                                                                                  |
| <ul><li>26. Which of the following is <b>false</b> about α and β rays?</li><li>a) The penetrating power of β rays are lesser than α rays.</li></ul>                     |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| <ul> <li>c) The ionizing power of β rays are lesser than α rays.</li> <li>d) The trainctony of α and β rays connect be abanded by applying a magnetic field.</li> </ul> |
| d) The trajectory of $\alpha$ and $\beta$ rays cannot be changed by applying a magnetic field.                                                                          |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |

| 27. Which of the following statement/s are <b>false</b> ?                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                                                                                                                                                                                |
| a) The first nuclear model of the atom was proposed by Thomson.                                                                                                                                                                                                                                                                                  |
| b) The e/m value of positive rays does not change according to the gas on the cathode ray                                                                                                                                                                                                                                                        |
| tube.                                                                                                                                                                                                                                                                                                                                            |
| c) A type of particle which is similar to <i>He</i> particles is used for gold leaf testing.                                                                                                                                                                                                                                                     |
| d) Electrons behave as waves and particles at the same time.                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                  |
| 28. Which of the following statement/s are <b>true</b> ?                                                                                                                                                                                                                                                                                         |
| -                                                                                                                                                                                                                                                                                                                                                |
| a) Canal rays are formed by the gas in the Crooks tube.                                                                                                                                                                                                                                                                                          |
| <ul><li>a) Canal rays are formed by the gas in the Crooks tube.</li><li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and</li></ul>                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                  |
| b) In Rutherford's gold leaf experiment, incoming $\alpha$ rays hit the gold nucleus and                                                                                                                                                                                                                                                         |
| <ul><li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li><li>c) Hund's law states that no two electrons in an atom can have the same set of quantum</li></ul>                                                                                                   |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> </ul>                                                                                       |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> </ul>                                                                                       |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> </ul>                                                                                       |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> <li>d) Neutron is the subatomic particle that stabilizes the nucleus of an atom.</li> </ul> |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> <li>d) Neutron is the subatomic particle that stabilizes the nucleus of an atom.</li> </ul> |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> <li>d) Neutron is the subatomic particle that stabilizes the nucleus of an atom.</li> </ul> |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> <li>d) Neutron is the subatomic particle that stabilizes the nucleus of an atom.</li> </ul> |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> <li>d) Neutron is the subatomic particle that stabilizes the nucleus of an atom.</li> </ul> |
| <ul> <li>b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.</li> <li>c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers.</li> <li>d) Neutron is the subatomic particle that stabilizes the nucleus of an atom.</li> </ul> |

| •••       |                                                                                 |                                                       |
|-----------|---------------------------------------------------------------------------------|-------------------------------------------------------|
| •••       |                                                                                 |                                                       |
| •••       | ••••••                                                                          |                                                       |
| •••       |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
| 30. A mo  | le of Na atoms has a mass of 23 g mol <sup>-1</sup> . T                         | he true statement/s regarding the relative atomic     |
| mass      | of Na is/are, (N <sub>A</sub> = Avogadro constant)                              |                                                       |
| a)        | $\frac{\textit{Mass of a Na atom}}{\textit{Mass of a 12C atom}} \times 12 = 23$ | b) $\frac{Mass\ of\ a\ Na\ atom}{1\ Da} = 23$         |
| c)        | $\frac{\textit{Mass of a Na atom}}{\frac{12g}{N_A} \times \frac{1}{12}} = 23$   | d) $\frac{Mass\ of\ 1\ mol\ of\ Na\ atoms}{N_A} = 23$ |
| 0)        | $\frac{12g}{N_A} \times \frac{1}{12}$                                           | $N_A$                                                 |
| •••       |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
|           |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
|           | •••••                                                                           |                                                       |
|           | •••••                                                                           |                                                       |
| •••       |                                                                                 |                                                       |
| 31. Which | h of the following statement/s is correct a                                     | about the $^{214}_{90}Th^{2-}$ ion?                   |
| a)        | It has 88 electrons.                                                            |                                                       |
| b)        | It has 124 neutrons.                                                            |                                                       |
| c)        | It has 90 protons.                                                              |                                                       |
| d)        | The total number of electrons, protons,                                         | and neutrons is 214.                                  |
| •••       |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
|           |                                                                                 |                                                       |
| •••       |                                                                                 |                                                       |
|           |                                                                                 |                                                       |
|           |                                                                                 |                                                       |
|           |                                                                                 |                                                       |
| • • •     |                                                                                 |                                                       |

\* Follow the instructions given below for question number 32 to 35.

|   | First statement | Second statement                                                |
|---|-----------------|-----------------------------------------------------------------|
| 1 | True            | True, and correctly explains the first statement                |
| 2 | True            | True, but does <b>not</b> explain the first statement correctly |
| 3 | True            | False                                                           |
| 4 | False           | True                                                            |
| 5 | False           | False                                                           |

|    | First statement                                               | Second statement                             |  |  |  |  |
|----|---------------------------------------------------------------|----------------------------------------------|--|--|--|--|
| 32 | A proton is heavier than a neutron.                           | Each ion has at least one electron.          |  |  |  |  |
| 33 | A gas is ionized more by $\beta$ rays than by $\alpha$        | The speed of $\beta$ rays is higher than the |  |  |  |  |
|    | rays.                                                         | speed of α rays.                             |  |  |  |  |
| 34 | ${}_{1}^{1}H, {}_{1}^{2}H, {}_{1}^{3}H$ are isotopic atoms of | A change in the number of protons and        |  |  |  |  |
|    | Hydrogen.                                                     | number of electrons in the nucleus of        |  |  |  |  |
|    |                                                               | different atoms of the same elements is      |  |  |  |  |
|    |                                                               | isotopes.                                    |  |  |  |  |
| 35 | Isotopes of the same element have the                         | Isotopes have the same physical and          |  |  |  |  |
|    | same atomic number and different mass                         | chemical properties.                         |  |  |  |  |
|    | numbers.                                                      |                                              |  |  |  |  |

\*\*\*

## **Structured Essay**

| 36 | . Complete | e the | blanks  | s in th | e following passage using  | the m  | ost app | ropria | te term/s.                              |      |       |
|----|------------|-------|---------|---------|----------------------------|--------|---------|--------|-----------------------------------------|------|-------|
|    | Around     | 1864  | , scie  | ntists  | (1)                        | 8      | and (2) |        |                                         |      |       |
|    | studied th | ne na | ture of | f the e | lectron. A beam of light w | as (3) |         |        | • • • • • • • • • • • • • • • • • • • • | fron | 1 the |
|    | cathode    | to    | the     | (4)     |                            | and    | they    | are    | named                                   | as   | (5)   |
|    |            |       |         |         |                            |        |         |        |                                         |      |       |

- 37. J.J. Thomson conducted several experiments to test the properties of the cathode rays.
  - I) State 3 properties of cathode rays as revealed by those tests.
  - II) Describe one of the above properties with a sketch of a cathode ray tube (observations and conclusions should be given).

| 38. | Fill in the blanks.                                                        |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------|--|--|--|--|--|--|
|     | The ratio between (1) and (2) of cathode                                   |  |  |  |  |  |  |
|     | ray particles was determined by (3) in 1847. In the early 20 <sup>th</sup> |  |  |  |  |  |  |
|     | century, it was discovered that the value of (4) for the electron was      |  |  |  |  |  |  |
|     | (5) from the (6) done by                                                   |  |  |  |  |  |  |
|     | (7) Therefore, the mass is equal to (8) g.                                 |  |  |  |  |  |  |
|     | It is about (9) times the mass of the (10)                                 |  |  |  |  |  |  |
|     | atom.                                                                      |  |  |  |  |  |  |
| 39. | Fill in the blanks.                                                        |  |  |  |  |  |  |
|     | The phenomenon of radioactivity was discovered in 1897 by (1)              |  |  |  |  |  |  |
|     | The Uranium salt releases some type of (2) that could penetrate            |  |  |  |  |  |  |
|     | material and this led to his discovery. Later, the (3)                     |  |  |  |  |  |  |
|     | discovered that other elements such as (4) and                             |  |  |  |  |  |  |
|     | (5)                                                                        |  |  |  |  |  |  |
|     | rays were named as (7), (8), and                                           |  |  |  |  |  |  |
|     | (9)                                                                        |  |  |  |  |  |  |
| 40. | Fill in the blanks.                                                        |  |  |  |  |  |  |
|     | In 1911, the structure of the atom was studied by the (1) done by          |  |  |  |  |  |  |
|     | (2) It was evident from the above experiment that                          |  |  |  |  |  |  |
|     | (3) occurs when a beam of (4) particles is                                 |  |  |  |  |  |  |
|     | diffracted to a (5) foil. The truth of Rutherford's                        |  |  |  |  |  |  |
|     | (6) model of the atom was confirmed by the quantitative                    |  |  |  |  |  |  |
| exp | periments done by (7) Accordingly, this small area where all the           |  |  |  |  |  |  |
|     | (8) particles in the atom are concentrated was named as                    |  |  |  |  |  |  |
|     | (9)                                                                        |  |  |  |  |  |  |
|     |                                                                            |  |  |  |  |  |  |
|     |                                                                            |  |  |  |  |  |  |

\*\*\*

## **Essay**

- 41. 2 isotopes of Cl are found in a Cl gas sample as  $^{35}_{17}Cl$  and  $^{37}_{17}Cl$ . If the mean relative atomic mass of Cl is 35.5, calculate the relative abundances of each isotope.
- 42. Naturally occurring carbon is a mixture of two isotopes as  ${}^{12}_{6}C$  and  ${}^{13}_{6}C$ . Find the percentage of  ${}^{12}_{6}C$  and  ${}^{13}_{6}C$  isotopes contained in a sample of carbon of relative atomic mass 12.0112. The relative isotopic mass of  ${}^{13}_{6}C$  is 13.0034.
- 43. Neon gas is a mixture of 3 isotopes with mass numbers of 20, 21, 22. Their percentages are 90.51%, 0.27%, and 9.22% respectively. Find the relative atomic of Ne.
- 44. If the relative atomic mass of Cl is 35.454 in a mixture of two naturally occurring isotopes of <sup>35</sup>Cl and <sup>37</sup>Cl, find the number of <sup>35</sup>Cl atoms in a sample of 1000 Cl atoms.

\*\*\*