UNIT 1-TUTORIAL 4: ATOMIC STRUCTURE | 1. | 1. Which is not a property of cathode r | ays? | | |----|--|-------------------------------------|---------------------------| | | 1) They are attracted to the (+) 1 | plate when an electric field is app | plied along their path. | | | 2) The e/m ratio of cathode rays | s from different gases is constant | | | | 3) There is an inclination toward | ds the North Pole in a magnetic t | field. | | | 4) They move in a straight line. | | | | | 5) The nature of cathode rays d | loes not depend on the gas insid | e the cathode ray tube or | | | the material it is made of. | 2. | 2. Who showed that the charge/mass | ratio of a cathode ray particle de | oes not vary with the gas | | | contained in the cathode ray tube? | | | | | 1) G.J. Stoney 2 |) Ernest Rutherford | 3) J.J. Thomson | | | 4) R.A. Millikan 5 |) William Crookes | 3. | 3. Who among the following is the scient | entists who gave that name to the | e "electron"? | | | 1) William Crookes 2 |) Ernest Rutherford | 3) G.J. Stoney | | | 4) Henri Becquerel 5 | J.J. Thomson | | | | | 1 | | | | ••••••••• | ••••• | | |----|--------------------------------|--------------------------------|--| 4. | The scientist who named the | basic unit of electricity as ' | 'electron" is. | | | 1) J.J. Thomson | 2) Rutherford | 3) Stoney | | | 4) R.A. Millikan | 5) Michael Faraday | , , | | | • | | | | | | | | | | | | | | | | ••••• | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | 5. | Who observed in the study | of cathode rays that the na | ture of cathode rays does not change | | | regardless of the material the | e cathode is made of or the g | gas in the tube? | | | 1) G.J. Stoney | 2) J.J. Thomson | 3) William Crookes | | | 4) Ernest Rutherford | 5) R.A. Millikan | ••••• | | | 6 | Which of the Callerying state | | | | 6. | S | | | | | , | thode rays are deflected per | | | | 2) A cathode ray is a beau | am of particles with both ma | ass and kinetic energy. | | | 3) The nature of the cath | node rays does not vary with | the gas in the discharge tube but with | | | the material used for | the eathede | | | | • | ot deflected in a magnetic fie | | | |----|---|--------------------------------------|----------------------------------|-----------| | | 5) The e/m ratio of ca | athode rays from different gas | es is different from each other. | | | | | | | ••••• | | | | | | • • • • • | | | | | | •••• | | | | | | •••• | | | | | | • • • • • | | | | | | • • • • • | | 7. | Which of the following st | tatement is true about cathod | e rays? | •••• | | | _ | the North Pole in a magnetic | | | | | • | the South Pole in a magnetic | | | | | 3) Contains He nucle | _ | | | | | 4) Moves in a straigh | | | | | | 5) Able to perform w | ork while traveling. | | | | | • | 8. | The term "electron" was | first introduced by, | | | | | 1) J.J. Thomson | 2) Moseley | 3) Rutherford | | | | 4) Stoney | 5) Faraday | 9. The two scientists who discovered the radioactivity caused by the nuclei of certain elements | S | |---|---| | and the generation of positive rays in the cathode ray tube were respectively, | | | 1) Robert Millikan and Eugen Goldstein | | | 2) J.J. Thomson and Henri Becquerel | | | 3) Henri Becquerel and Eugen Goldstein | | | 4) Ernest Rutherford and J.J. Thomson | | | 5) Eugen Goldstein and Henri Becquerel | 10. Consider statements I and II below. | | | I. Presenting the "golf ball model" as an atomic model. | | | II. Providing experimental proof of the existence of positive charges in matter. | | | The scientists who presented the facts mentioned in these I and II statements respectively are | , | | 1) J.J. Thomson and Eugen Goldstein | | | 2) Ernest Rutherford and John Dalton | | | 3) John Dalton and Eugen Goldstein | | | 4) John Dalton and James Chadwick | | | 5) Eugen Goldstein and Ernest Rutherford | 11. W | ho of the follow | ing scientists s | showed that the charge/m | nass ration of a positiv | e ray particle | |--------|--|---|----------------------------------|--|-----------------| | va | varies with the gas contained in the cathode ray tube? | | | | | | | 1) E. Goldsteir | 1 | 2) Ernest Rutherford | 3) J.J. Tho: | mson | | | 4) R.A. Millika | n | 5) G.J. Stoney | | | | | ••••• | • | | | ••••• | | | | • | | | | | | | • | 12. Tł | ne mass of a prote | on is given by, | | | | | | 1) 10 ⁻²² g | 2) 10^{-25} g | $3) 10^{-13} g$ | 4) 10^{-8} g | 5) 10^{-24} g | | | | | | | | | | | • | | | ••••• | | | ••••• | • | | | | | | | • | | | | | | | • | | | | | | ••••• | • | | | | | | ••••• | • | | | | | 13. W | hich of the follo | wing statemen | ts about alpha (α) rays, b | oeta (β) rays, and gam | ma (γ) rays is | | fa | lse? | | | | | | | 1) γ rays are no | ot accelerated i | n an electric field. | | | | | 2) α particles a | re positively c | harged. | | | | | 3) α rays show | more accelera | tion than β rays in an ele | ctric field. | | | | 4) Ernest Ruth | erford discover | red that radioactive element | ents release α , β , and γ | rays. | | | 5) γ rays are a | type of high er | nergy radiation. | | | | | ••••• | • | | | | | | | • | | | | | | ••••• | | | | | | | ••••• | • | | | | | | ••••• | • | | | | | | | | | | | | 14. Who first represented a mode | el of the nucleus of the atom? | | |-----------------------------------|------------------------------------|------------------------------------| | 1) Niels Bohr | 2) G.J. Stoney | 3) R.A. Millikan | | 4) Ernest Rutherford | 5) J.J. Thomson | heses/discoveries related to atom | | | I. Like the planets orbiting | ng around the sun, the atomic nuc | cleus is surrounded by electrons | | orbiting around it. | | | | II. The number of positiv | e charges in the nucleus increases | s one electron unit at a time. | | The two scientists who ma | ade the hypotheses/discoveries me | entioned in I and II respectively, | | 1) Eugen Goldstein and J. | J. Thomson | | | 2) Niels Henrik David Bo | hr and Henry Gwyn Jeffreys Mos | seley | | 3) Niels Henrik David Bo | hr and J.J. Thomson | • | | 4) J.J. Thomson and Euge | n Goldstein | | | | Ienry Gwyn Jeffreys Moseley | 16. The neutron was discovered by | by, | | | 1) J.J. Thomson | 2) James Chadwick | 3) Ernest Rutherford | | 4) William Aston | 5) Eugen Goldstein | | | | | | | • • | • | • | ••••• | | | | |---------|---|--|-----------------------|--|--|--| | • | | | | | | | | • | | | | | | | | • | | ••••• | | | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | 17. The | 17. The electron was discovered by, | | | | | | | 1 |) J.J. Thomson | 2) James Chadwick | 3) Ernest Rutherford | | | | | 4 |) Eugen Goldstein | 5) John Dalton | | | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | • | | ••••• | | | | | | • | | ••••• | | | | | | • | | ••••• | | | | | | • | | | | | | | | | | | | | | | | 18. The | proton was discovered by, | | | | | | | | proton was discovered by,) J.J. Thomson | 2) Ernest Rutherford | 3) James Chadwick | | | | | 1 | - | 2) Ernest Rutherford5) Henri Becquerel | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 |) J.J. Thomson | | 3) James Chadwick | | | | | 1 4 |) J.J. Thomson) Henry Moseley | 5) Henri Becquerel | 3) James Chadwick | | | | | 1 4 | J.J. Thomson Henry Moseley sider the following findings 1 | 5) Henri Becquerel | 3) James Chadwick | | | | | 1 4 |) J.J. Thomson) Henry Moseley | 5) Henri Becquerel | 3) James Chadwick | | | | | 1 4 | J.J. Thomson Henry Moseley Sider the following findings reconducting experiments to Determination of e/m ratio | 5) Henri Becquerel related to atomic structure. o find isotopes o of an electron. | 3) James Chadwick | | | | | 1 4 4 | J.J. Thomson Henry Moseley Sider the following findings to Conducting experiments to Determination of e/m ratio Discovery of the nucleus of | 5) Henri Becquerel related to atomic structure. o find isotopes o of an electron. of the atom. | | | | | | 1 4 4 | J.J. Thomson Henry Moseley Sider the following findings to Conducting experiments to Determination of e/m ratio Discovery of the nucleus of | 5) Henri Becquerel related to atomic structure. o find isotopes o of an electron. of the atom. ed to the discoveries mention | and III respectively, | | | | | 2 | 2) J.J. Thomson, Jo | hn Dalton, Ernest Rutherford | | |---------|---|---|---------------------------------------| | 2 | 3) William Aston, J | .J. Thomson, Henri Becquerel | | | 2 | 4) William Aston, J | .J. Thomson, Ernest Rutherford | | | | 5) Eugen Goldstein | , J.J. Thomson, Geiger | | | | | | | | | • | | | | , | | | | | | • | | | | • | | | | | | | | | | | | | | | 20. Con | sider statements I a | and II below. | | | I. | Introducing the | name "electron" for the elementary | particle of electricity. | | II. | Finding the elec | tron's charge to be 1.602×10^{-19} | C. | | The | e scientists who pre- | sented the facts mentioned in these | I and II statements respectively are, | | | 1) John Dalton and | J.J. Thomson | | | | 2) G.J. Stoney and | R.A. Millikan | | | | 3) G.J. Stoney and | William Crookes | | | | 4) R.A. Millikan an | nd G.J. Stoney | | | | 5) J.J. Thomson an | d James Chadwick | 21. Wh | ich of the followir | ng sets of numbers represents the | number of protons, neutrons and | | elec | etrons in the ${}^{18}_{8}O_2^{2-}$ | on? | | | | 1) 8, 10, 10 | 2) 10, 20, 14 | 3) 16, 20, 18 | | 4 | 4) 8, 10, 6 | 5) 16, 14, 20 | | | , | | | | | • | | | | | ••••• | | | | | |--|----------------------|---|--|----------------| | | | | | | | | | | | | | | | ••••• | | | | The number of elec | etrons and neutrons | s in the triple posit | ive ion of $^{52}_{24}Cr$ res | pectively are, | | 1) 24 and 28 | 2) | 21 and 28 | 3) 27 | ' and 28 | | 4) 28 and 21 | 5) | 21 and 25 | | | | | | | | | | | | | | •••• | The number of elec | etrons, neutrons, ar | nd protons in 81/A-1 | ion respectively ar | e. | | The number of electron 1) 36, 18, 35 | | _ | | | | | | and protons in ⁸¹ / ₃₅ A ⁻¹
3) 46, 35, 47 | | | | | | _ | | | | 1) 36, 18, 35 | 2) 37, 45, 36 | 3) 46, 35, 47 | 4) 34, 46, 35 | 5) 36, 46, 35 | | 1) 36, 18, 35 | 2) 37, 45, 36 | _ | 4) 34, 46, 35 | 5) 36, 46, 35 | | 1) 36, 18, 35 | 2) 37, 45, 36 | 3) 46, 35, 47 | 4) 34, 46, 35 | 5) 36, 46, 35 | | 1) 36, 18, 35 | 2) 37, 45, 36 | 3) 46, 35, 47 | 4) 34, 46, 35 | 5) 36, 46, 35 | | 1) 36, 18, 35 | 2) 37, 45, 36 | 3) 46, 35, 47 | 4) 34, 46, 35 | 5) 36, 46, 35 | | 1) 36, 18, 35 | 2) 37, 45, 36 | 3) 46, 35, 47 | 4) 34, 46, 35 | 5) 36, 46, 35 | | 1) 36, 18, 35* Follow the instruction | 2) 37, 45, 36 | 3) 46, 35, 47 | 4) 34, 46, 35ber 24 to 31. | 5) 36, 46, 35 | | 1) 36, 18, 35* Follow the instruction (1) | 2) 37, 45, 36 | 3) 46, 35, 47 y for question numl (3) | 4) 34, 46, 35 ber 24 to 31. (4) | 5) 36, 46, 35 | | 1) 36, 18, 35* Follow the instruction | 2) 37, 45, 36 | 3) 46, 35, 47 y for question numl (3) | 4) 34, 46, 35ber 24 to 31. | 5) 36, 46, 35 | | 1) 36, 18, 35* Follow the instruction (1) Only (a) and (b) | 2) 37, 45, 36 | 3) 46, 35, 47 for question num (3) Only (c) and (d) | 4) 34, 46, 35ber 24 to 31. (4) Only (d) and (a) | 5) 36, 46, 35 | - 24. Cathode ray particles are, - a) negatively charged. - b) attracted to the N-pole of a magnet. | c) attracted to the negative electrode in an external electric field. | |---| | d) move along a straight path. | | | | | | | | | | | | | | 25. Which of the following is true about the factors on which the charge/mass ratio of cathode | | rays depends? | | a) It does not depend on the metal the cathode is made of. | | b) Does not depend on the gas in the discharge tube. | | c) Depends on the potential gap applied across the discharge tube. | | d) Depends on the pressure in the discharge pipe. | | | | | | | | | | | | | | 26 Which of the fellowing is folgon beaut mand 0 mans? | | 26. Which of the following is false about α and β rays?a) The penetrating power of β rays are lesser than α rays. | | | | | | c) The ionizing power of β rays are lesser than α rays. d) The trainctony of α and β rays connect be abanded by applying a magnetic field. | | d) The trajectory of α and β rays cannot be changed by applying a magnetic field. | | | | | | | | | | | | 27. Which of the following statement/s are false ? | |--| | - | | a) The first nuclear model of the atom was proposed by Thomson. | | b) The e/m value of positive rays does not change according to the gas on the cathode ray | | tube. | | c) A type of particle which is similar to <i>He</i> particles is used for gold leaf testing. | | d) Electrons behave as waves and particles at the same time. | | | | | | | | | | | | | | | | 28. Which of the following statement/s are true ? | | - | | a) Canal rays are formed by the gas in the Crooks tube. | | a) Canal rays are formed by the gas in the Crooks tube.b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and | | | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from.c) Hund's law states that no two electrons in an atom can have the same set of quantum | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. d) Neutron is the subatomic particle that stabilizes the nucleus of an atom. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. d) Neutron is the subatomic particle that stabilizes the nucleus of an atom. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. d) Neutron is the subatomic particle that stabilizes the nucleus of an atom. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. d) Neutron is the subatomic particle that stabilizes the nucleus of an atom. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. d) Neutron is the subatomic particle that stabilizes the nucleus of an atom. | | b) In Rutherford's gold leaf experiment, incoming α rays hit the gold nucleus and bounces back in the direction it came from. c) Hund's law states that no two electrons in an atom can have the same set of quantum numbers. d) Neutron is the subatomic particle that stabilizes the nucleus of an atom. | | ••• | | | |-----------|---|---| | ••• | | | | ••• | •••••• | | | ••• | | | | ••• | | | | ••• | | | | ••• | | | | 30. A mo | le of Na atoms has a mass of 23 g mol ⁻¹ . T | he true statement/s regarding the relative atomic | | mass | of Na is/are, (N _A = Avogadro constant) | | | a) | $\frac{\textit{Mass of a Na atom}}{\textit{Mass of a 12C atom}} \times 12 = 23$ | b) $\frac{Mass\ of\ a\ Na\ atom}{1\ Da} = 23$ | | c) | $\frac{\textit{Mass of a Na atom}}{\frac{12g}{N_A} \times \frac{1}{12}} = 23$ | d) $\frac{Mass\ of\ 1\ mol\ of\ Na\ atoms}{N_A} = 23$ | | 0) | $\frac{12g}{N_A} \times \frac{1}{12}$ | N_A | | ••• | | | | ••• | | | | | | | | ••• | | | | | ••••• | | | | ••••• | | | ••• | | | | 31. Which | h of the following statement/s is correct a | about the $^{214}_{90}Th^{2-}$ ion? | | a) | It has 88 electrons. | | | b) | It has 124 neutrons. | | | c) | It has 90 protons. | | | d) | The total number of electrons, protons, | and neutrons is 214. | | ••• | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | | | | | • • • | | | * Follow the instructions given below for question number 32 to 35. | | First statement | Second statement | |---|-----------------|---| | 1 | True | True, and correctly explains the first statement | | 2 | True | True, but does not explain the first statement correctly | | 3 | True | False | | 4 | False | True | | 5 | False | False | | | First statement | Second statement | | | | | |----|---|--|--|--|--|--| | 32 | A proton is heavier than a neutron. | Each ion has at least one electron. | | | | | | 33 | A gas is ionized more by β rays than by α | The speed of β rays is higher than the | | | | | | | rays. | speed of α rays. | | | | | | 34 | ${}_{1}^{1}H, {}_{1}^{2}H, {}_{1}^{3}H$ are isotopic atoms of | A change in the number of protons and | | | | | | | Hydrogen. | number of electrons in the nucleus of | | | | | | | | different atoms of the same elements is | | | | | | | | isotopes. | | | | | | 35 | Isotopes of the same element have the | Isotopes have the same physical and | | | | | | | same atomic number and different mass | chemical properties. | | | | | | | numbers. | | | | | | *** ## **Structured Essay** | 36 | . Complete | e the | blanks | s in th | e following passage using | the m | ost app | ropria | te term/s. | | | |----|------------|-------|---------|---------|----------------------------|--------|---------|--------|---|------|-------| | | Around | 1864 | , scie | ntists | (1) | 8 | and (2) | | | | | | | studied th | ne na | ture of | f the e | lectron. A beam of light w | as (3) | | | • | fron | 1 the | | | cathode | to | the | (4) | | and | they | are | named | as | (5) | | | | | | | | | | | | | | - 37. J.J. Thomson conducted several experiments to test the properties of the cathode rays. - I) State 3 properties of cathode rays as revealed by those tests. - II) Describe one of the above properties with a sketch of a cathode ray tube (observations and conclusions should be given). | 38. | Fill in the blanks. | | | | | | | |-----|--|--|--|--|--|--|--| | | The ratio between (1) and (2) of cathode | | | | | | | | | ray particles was determined by (3) in 1847. In the early 20 th | | | | | | | | | century, it was discovered that the value of (4) for the electron was | | | | | | | | | (5) from the (6) done by | | | | | | | | | (7) Therefore, the mass is equal to (8) g. | | | | | | | | | It is about (9) times the mass of the (10) | | | | | | | | | atom. | | | | | | | | 39. | Fill in the blanks. | | | | | | | | | The phenomenon of radioactivity was discovered in 1897 by (1) | | | | | | | | | The Uranium salt releases some type of (2) that could penetrate | | | | | | | | | material and this led to his discovery. Later, the (3) | | | | | | | | | discovered that other elements such as (4) and | | | | | | | | | (5) | | | | | | | | | rays were named as (7), (8), and | | | | | | | | | (9) | | | | | | | | 40. | Fill in the blanks. | | | | | | | | | In 1911, the structure of the atom was studied by the (1) done by | | | | | | | | | (2) It was evident from the above experiment that | | | | | | | | | (3) occurs when a beam of (4) particles is | | | | | | | | | diffracted to a (5) foil. The truth of Rutherford's | | | | | | | | | (6) model of the atom was confirmed by the quantitative | | | | | | | | exp | periments done by (7) Accordingly, this small area where all the | | | | | | | | | (8) particles in the atom are concentrated was named as | | | | | | | | | (9) | *** ## **Essay** - 41. 2 isotopes of Cl are found in a Cl gas sample as $^{35}_{17}Cl$ and $^{37}_{17}Cl$. If the mean relative atomic mass of Cl is 35.5, calculate the relative abundances of each isotope. - 42. Naturally occurring carbon is a mixture of two isotopes as ${}^{12}_{6}C$ and ${}^{13}_{6}C$. Find the percentage of ${}^{12}_{6}C$ and ${}^{13}_{6}C$ isotopes contained in a sample of carbon of relative atomic mass 12.0112. The relative isotopic mass of ${}^{13}_{6}C$ is 13.0034. - 43. Neon gas is a mixture of 3 isotopes with mass numbers of 20, 21, 22. Their percentages are 90.51%, 0.27%, and 9.22% respectively. Find the relative atomic of Ne. - 44. If the relative atomic mass of Cl is 35.454 in a mixture of two naturally occurring isotopes of ³⁵Cl and ³⁷Cl, find the number of ³⁵Cl atoms in a sample of 1000 Cl atoms. ***