	2025-CHEMISTRY REVISION				
			PAPER -	5	Time: 60 minutes
1.	Which of the fo	llowing elements h	nave the highest elec	ctro positivity?	
	i. Na	ii. Mg	iii. Al	iv. Si	v. 0
2.	What is the forr	nula of the oxide fo	ormed by M(atomic r	number 34) at its hi	ghest oxidization state?
	i. MO ₂	ii. M_2O_3	iii. MO ₃	iv. M_2O_5	v. M ₂ 0
3.	Which of the fo	llowing molecule c	or ion has the same g	geometrical shape	as SO_3^{2-} ion?
	i. SO ₃	ii. BrO_3^-	iii. COCl ₂	iv. NO_3^-	v. XeOF ₂
4.	Which of the foll 1. CH ₃ —CH ₂ 3.	owing molecules wil CHCH=CHCH CH3 	I show both optical is 3 2. CH 4.	omerism and diaster CH ₃ CH ₃ H ₃ -CH-CH=C-CH CH ₃ 	reoisomerism? I ₃
	CH3—CH 5. CH3	L2-CH-HC=CH2 CH3 -CH2-C-CH=CH2 CH3		CH ₃ —CH ₂ —C=CH-	-CH2-CH3
5.	Which of the fo	llowing has the hig	hest standard secor	nd ionization entha	Ilpy?
	i. F	ii. Ne	iii. Cs	iv. Na	v. Mg
6.	What is highest	number of electro	ons that can be prese	ent with quantum i	number $l = 3$?
	i. 3	ii. 6	iii. 10	iv. 14	v. 12
					1 Vajira Seneviratne

7. Which of the following solid has its molecules bonded only by weak dispersion forces?

i. $H_2O(s)$ ii. MgO(s)iii. $CO_2(s)$ iv. $SiO_2(s)$ v. Cu(s)

8. The volume of HCl used when titrating $0.1 \text{ mol } \text{dm}^{-3}$ HCl with 25 cm³ of Na₂CO₃ solution is 18 cm³. Calculate the concentration to the nearest second decimal place of Na₂CO₃ in mol dm⁻³ if phenolphthalein was used as an indicator. i. 0.05 ii. 0.07 iii. 0.04 iv. 0.03 v. 0.01

9. In a certain oxidation process, hydrazine (N_2H_4) molecule removes 14 electrons and becomes an oxide of nitrogen. If the oxidation number of hydrogen didn't change, what is the oxide of nitrogen formed?

i. N₂O ii. NO iii. NO₂ iv. N₂O₃ v. N₂O₅

10. 0.03 mol of NH_4NO_3 is present in a closed vessel of volume 1 dm³. It dissociates completely into $N_2O_{(g)}$ and $H_2O_{(g)}$ when the vessel is heated to 400 K. The pressure of the vessel at this state is,

i. 3×10^{5} Pa ii. 1×10^{5} Pa iii. 0.5×10^{5} Pa iv. 0.1×10^{5} Pa v. 0.03×10^{5} Pa

- 11. The concentration of an aqueous solution of $Al_2(SO_4)_3$ is 6.84 ppm. Which of the following statements are correct regarding this solution? (AI = 27, S = 32, O = 16, 1 ppm = 1 mg dm⁻³)
 - i. Concentration of Al^{3+} is 2.16 ppm.ii. Concentration of Al^{3+} is 13.68 ppm.iii. Concentration of SO_4^{2-} is 3.84 ppmiv. Concentration of SO_4^{2-} is 20.52 ppmv. Overall concentration of jons is 1.0×10^{-4} mol dm⁻³
- 12. When a mixture of $NaHCO_3$ and Na_2CO_3 of mass 0.274 g was heated the final constant mass obtained is 0.212 g. Mass of Na_2CO_3 in the initial sample is, (Na=23, H=1, C=12, O=16)

i. 0.062 g	ii. 0.137 g	iii. 0.106 g	iv. 0.168 g	v. 0.084 g
0	0	0	0	

- 13. Chlorate (VII)ion/ClO₄⁻ acts as an oxidizer. Using 25 cm³ of 0.05 mol dm⁻³ potassium chlorate(VII) solution, 500 cm³ of 0.02 mol dm⁻³ aqueous titanium(III)chloride solution was completely oxidized to titanium(IV) ions. What is the product obtained by the reduction of chlorate(VII) ions
 - i. Cl_2 ii. Cl^- iii. ClO_2^- iv. OCl^- v. ClO_3^-

14. Among the species NO_2 , NO_2^- , NO_2^+ , the variation of O - N - O bond angle is correctly shown by,

i. $NO_2^- > NO_2 > NO_2^+$ ii. $NO_2^+ > NO_2 > NO_2^$ iii. $NO_2^- > NO_2^+$ v. $NO_2^+ > NO_2^- > NO_2^+$ iv. $NO_2^- > NO_2^+ > NO_2$

- 15. The volume of the gas evolved when 164.6 g of Na amalgam was reacted with water is 2.24 dm³ at S.T.P. Assume the gas behaves ideally. (Relative molar masses Na=23, Hg=200) molar fraction of Na in the amalgam is,
 - i. 0.1 ii. 0.2 iii. 0.4 iv. 0.6 v. 0.8
 - Follow the instructions given below for the questions from 16 to 20.

(1)	(2)	(3)	(4)	(5)
if only (a)	if only (b) and	if only (c) and	if only (<i>d</i>) and	if any other
and (<i>b</i>) are	(<i>c</i>) are correct.	(<i>d</i>) are	(<i>a</i>) are correct.	number or
correct.		correct.		combination of
				response is
				correct.

16. Which of the following statement/s is/are false regarding gases?

- a. In all real gases at low pressure, compressibility factor (Z) value is nearly 0.
- b. At high pressures, there's no effect of intermolecular forces on the behavior of gases.
- c. At high pressure, intermolecular forces among real gas molecules are weak.
- d. At high pressures repulsive forces occur between real gas molecules.

- 17. An element may exist in two or more different forms called allotropes. White **Sn** and grey **Sn** are two such allotropes of Sn. These two allotropes......
 - a) have different melting points.
 - b) have different numbers of neutrons but the same number of protons in their nuclei.
 - c) have the same density.
 - d) have the same boiling point.

18. Which of the following molecules or ions have a tetrahedral electron pair geometry?

- a. SO_2
- b. NH_4^+
- $c ClO_4^-$
- d. ICl₄

19. Which of the following statement/s is/are correct regarding an ideal gas?

- a. Repulsive forces never occur between gas molecules
- b. Attractive forces never occur between gas molecules
- c. Kinetic energy of gas molecules is directly proportional to the temperature.
- d. Value of $\frac{PV}{nRT}$ does not change with pressure.

20. Correct statement/s regarding $SO_2(g)$ is/are,

- a. H_2S can be oxidized using SO_2
- b. $H^+/KMnO_4$ can be oxidized using SO_2
- c. $SO_2(g)$ reacts with strong bases like $Ba(OH)_2$.
- d. SO_2 gives SO_4^{2-} acting as a bleaching agent

Follow the instructions given below for the questions from 21 to 25.

Response	First	Second Statement	
	Statement		
(1)	True	True, and correctly explains the first statement	
(2)	True	True, but does not explain the first statement correctly	
(3)	True	False	
(4)	False	True	
(5)	False	False	

	First Statement	Second Statement
21	Bond angle of NO_2^+ ion is greater	Repulsive force exerted by a lone pair of electrons
	than that of NO_2^- ion.	on a bond is greater than the repulsive force
		exerted by two bonds on each other.
22	Kinetic energy of an ideal gas	Volume of ideal gas molecules is negligible.
	molecule is a constant at constant	
	temperature.	
23	Standard neutralization enthalpy of	HF is a stronger acid than HCl.
	HF is greater than that of HCl	
	numerically.	
24	ICl_2^- and NO ₂ are both linear in	Molecules and ions that have the same number of
	shape.	atoms generally have the same shape.
25	Propanone has a higher boiling point	The carbon-oxygen double bond in propanone is
	than that of propan-2-ol.	more polarized than the carbon-oxygen single
		bond in propan-2-ol.

STRUCTURED ESSAY

1.

a) Consider the state of hybridization of the carbon atoms in the ethene molecule C₂H₄. Given below in Cage A is the schematic representation of the electron distribution in the outer shell of the ground state carbon atom, where each box represents an orbital.

Cage A: Ground State of carbon atom

i) Using boxes similar to those in Cage **A**, draw in Cage **B**, the outer orbitals of a hybridized carbon atom in ethene.

Label the boxes to indicate the types of orbitals represented by them. Indicate, as in Cage **A**. the electron distribution in the boxes in Cage **B**.

N.B. In drawing these boxes in Cage B. pay attention to their vertical position with respect to the boxes in Cage A.

- ii) Complete the following sentences by filling in the blanks: -
 - I) The electron in the orbital of carbon is involved information of the π bond in C_2H_4 .
 - II) The electrons in the orbitals of carbon are involved in the formation of C–H bonds in C₂H₄.
- c) Compounds P, Q, R all have the same molecular formula, C₇H₁₄. All three compounds do exhibit optical isomerism. However, none of them is a geometrical isomer or an optical isomer of any of the others. The three compounds P, Q, and R undergo catalytic hydrogenation to yield the same compound S with molecular formula, C₇H₁₆. S exhibits optical isomerism.
 - i) Write in the relevant box below, the possible 'structural formula for each of the compounds P, Q, R and S.

Compound	Structural formula
Р	
Q	

R	
S	

ii) One out of the three compounds **P**, **Q**, **R** exhibits geometrical isomerism. Draw the structures of the two geometrical isomers of the compound in the cases below.

Geometrical Isomer I	Geometrical Isomer II

b) The following data are provided: -

Heat source	relative molecular mass	standard boiling point/°C	standard molar enthalpy of combustion, ΔH ⁰ /kJ mol ⁻¹
C ₃ H ₈ (g)	44	-40	-2,000
C ₈ H ₁₈ (/)	114	+125	-5,200

- i) Under standard conditions, 5.0 kg each of propane and octane is separately subjected to complete combustion. Calculate, in each case,
 - I) the heat energy that is evolved.(C=12, H = 1)

II) the mass of gaseous CO₂ that is produced.

ii) Using your results from (i) above, deduce, giving two reasons, which of the two compounds would be more advantageous as a heat source.

02)

- a) The element M belongs to the third period. It gives H₂ by reacting with dil. H₂SO₄. When M reacts with conc. H₂SO₄ it produced a gas which shows bleaching properties. The sulphate of M is used in purification of drinking water. When M is combusted in air, both oxide and the nitride are formed.
 - i) Identify the metal **M**
 - ii) Write the balance equation for the reaction of \boldsymbol{M} and conc. H_2SO_4
 - iii) What is the oxidation state of **M** shown in the compounds?

.....

- iv) Although N_2 is inert when **M** is combusted in air, N_2 reacts with it. Explain the reasons.
- v) Write a use of the of **M**.

b) The aqueous solution of the following compounds are provided in the vessels labelled from A to E BaCl₂ (aq), Na₂S₂O₃(aq), Pb(NO₂)₂ (aq), MnCl₂(aq), Al(NO₃)₃ (aq) in an non ordered manner.
 To distinguish the above compounds, carried out tests and their observations are given in the following table.

Solution	Addition of aqueous NaOH	Addition of aqueous H ₂ SO ₄
Α	A clear solution was formed	A gas is evolved, and the solution
		became turbid.
В	A clear solution	A white precipitate is obtained.
С	A white precipitate and dissolves	A clear solution is obtained.
	when excess is added	
D	White precipitate is obtained, and it	A clear solution is obtained.
	turns to black within a short period	
	of time.	
E	A white precipitate is obtained.	A reddish-brown gas evolved

i) Identify the solution A to E.

_	_	-	_	_
Α	В	С	D	Ε

ii) Write the balance equations for the reactions relevant to each of the precipitation observations.

- c) **X** and **Y** are two elements of the second period of the periodic table. The electron affinities of them are negative values. The first ionization energy of **X** is less than the first ionization energy of **Y**.
 - i) Identify the elements,

X =

ii)	Write the electron configuration of an atom of X in its ground state.
iii)	When X is combusted in air it reacts with Y . Write the chemical equation for the reaction using the chemical symbols.
iv)	Write the balanced chemical equations for the reactions taken place when the followings react with the oxide of X . 1. dil. HCl
i)	 aqueous NaOH Write the balance equation for a suitable reaction to prepare a sample of the element Y in the laboratory.
ii)	Write two uses of the element Y .
A. V	Write down balanced chemical equations for the following.

- i) The thermal decomposition of $NaNO_3$
- ii) The thermal decomposition of $Mg(NO_3)_2$
- iii) The thermal decomposition of AgNO₃
- iv) The thermal decomposition of NH_4NO_3
- v) The oxidizing action of SO₂
- vi) The reducing action of SO₂
- vii) The oxidizing action of H_2S

viii)The reducing action of H₂S

b) An aqueous solution consists of Cu^{2+} (aq) and $C_2O_4^{2-}$ (aq). The following experiment is carried out to determine the molar ratio of Cu^{2+} (aq) and $C_2O_4^{2-}$ (aq) in the given solution.

First the aqueous solution is acidified by dil H₂SO₄. The volume of 22.6 cm³ of 0.02 mol dm⁻³ KMnO₄ is required for complete oxidation of the $C_2O_4^{2-}$ (aq) ions of the above solution. The resultant solution is neutralized by adding Na₂CO₃ (aq) solution.

Then the solution is acidified by the acetic acid and excess KI is added. To reduce liberated I_2 from it, 11.3 cm³ of 0.05 mol dm⁻³ Na₂S₂O₃ (aq) is required.

- i) Write balanced equations for all reactions could be taken place here.
- ii) Calculate the molar ratio of the ions Cu^{2+} : $C_2O_4^{2-}$ (aq) consisting in the solution.
- c) Write the balanced equations for the reactions taking place with the followings.
 - i) $Cl_{2(g)}$ with excess $NH_{3(g)}$
 - ii) S_(S) with aqueous NaOH
 - iii) Excess $H_2S_{(g)}$ with aqueous NaOH
 - iv) MgH_2 and water