Alkenes

(1) Give IUPAC names for compounds with the following structures.

$$\mathsf{H}_2\mathsf{C}\overline{\longleftarrow}\mathsf{C}\mathsf{H}\overline{\longleftarrow}\mathsf{C}\mathsf{H}_2\overline{\longleftarrow}\mathsf{C}\mathsf{H}_3$$

$$\mathbf{H_{3}C} \textcolor{red}{\longleftarrow} \mathbf{CH} \textcolor{red}{\longleftarrow} \mathbf{CH_{2}} \textcolor{red}{\longleftarrow} \mathbf{CH_{2}} \textcolor{red}{\longleftarrow} \mathbf{CH_{3}}$$

$$\begin{array}{c} \mathsf{H_3C} \textcolor{red}{\longleftarrow} \mathsf{CH} \textcolor{red}{\longrightarrow} \mathsf{CH} \textcolor{red}{\longleftarrow} \mathsf{CH_3} \\ \mathsf{CH_3} \end{array}$$

$$\substack{\mathsf{H_3C-C-CH_2-CH_3}\\\mathsf{CH_2}}$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_3C} \textcolor{red}{\longleftarrow} \mathsf{C} \textcolor{red}{\longleftarrow} \mathsf{CH_3} \\ \mathsf{CH_3} \end{array}$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_3C--CH_2-C---C} \\ \mathsf{C---CH_3} \\ \mathsf{CH_2--CH---CH_2} \end{array}$$

- (2) Draw structures corresponding to the following IUPAC names. If you think the name is incorrect, write the correct name.
 - i. hex-2-ene
 - ii. 2-methylpentene
 - iii. hept-2,3-diene
 - iv. 2,4-dimethylhex-1-ene
 - v. 2,4-dimethylpent-2-ene
 - vi. 4,4-diethylpent-2-ene
 - vii. 2-methylprop-1-ene
 - viii. 3-methyl-1-butene
 - ix. 4-ethyl-4,5,5-trimethyl-2-heptene
 - x. 2-ethyl-3-methylhexene
- (3) Draw the structures of the products of the following reactions.

(peroxide)

(4) Do the following conversions.

I.
$$CH_3CH_2CI \longrightarrow CH_2=CH_2$$

II. $CH_3CH_2CH(OH)CH_3 \longrightarrow CH_3CH=CHCH_3$

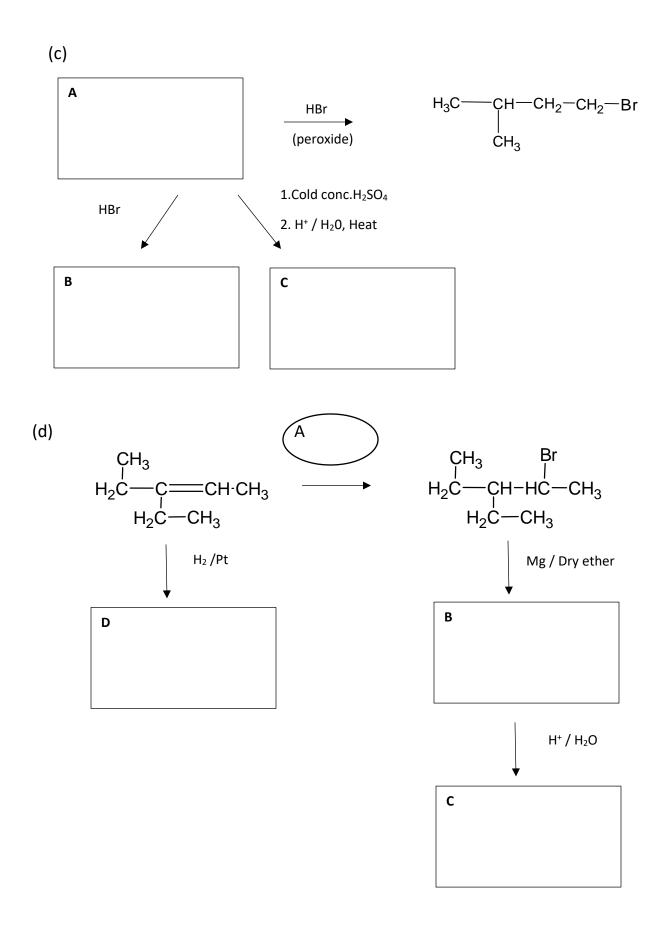
III. $CH_3CH(OH)(CH_3) \longrightarrow CH_3CH=CH_2$

IV. $CH_3CH_2CH_2OH \longrightarrow CH_3CH(OH)(CH_3)$

V. $CH_3CH=CH_2 \longrightarrow CH_3CHBrCH_2Br$

VI. $CH_3CH_2CH_2Br \longrightarrow CH_3CHBrCH_2Br$

VII. $CH_3CH(OH)(CH_3) \longrightarrow CH_3CH(OH)CH_2OH$


VIII. $CH_3CH_2CH_2Br \longrightarrow C_3H_8$

IX. $CH_3CH_2CH_2OH \longrightarrow C_3H_8$

X. $CH_3CH(Br)(CH_3) \longrightarrow CH_3CH_2CH_2Br$

(5) Draw the corresponding structures in the boxes given below.

(b)

(6) Write a test to distinguish following compounds.			
I.	CH ₃ CH ₂ CH ₃ and CH ₃ CH=CH ₂		
II.	CH ₃ CH=CH ₂ and CH ₃ CH=CH-CH ₃		
III.	methane and propene		
IV.	pentene and 2-pentene		
(7) Draw the possible structures for the following compounds.			
l.	Compound with 1SP ³ hybridized C with 2 SP ² hybridized C.		
II.	Compound with 3SP ³ hybridized C with 2 SP ² hybridized C.		
III.	Compound with 2SP ³ hybridized C with 4 SP ² hybridized C.		
(8) Write the mechanisms for the following reactions.			
I.	propene with Br ₂ /CCl ₄		
II.	propene with HBr		
III.	2-methylpent-2-ene with HBr		
(9) State whether the following statements are true or false.			
i.	Acyclic alkenes with one double bond but without any other functional groups follow C _n H _{2n-2} general formula.	()
ii.	Ethyne is the simplest alkene.	()
iii.	Carbon-carbon double bond of an alkene and is longer than a carbon single bond.	carl ′	oon-
iv.	Intermolecular forces of alkenes become stronger with increase	۱ ۵	,
ıv.	In the size of the molecules.	1)
V.	All the C atoms of butene are in the same plane.	()
		`	,

Vajira Seneviratne 5

Additional Questions.

- 1. Write the reaction between ethene and Potassium Manganate (VII) to produce glycol.
- 2. What are the advantages of this reaction?
- 3. Consider the following compound

$$H_3C$$
 H_3C
 H_3C
 CH_3

- (a) Write the IUPAC name of the compound.
- (b) Write down all the products formed when this diene is reacted with acidified KMnO₄.
- 4. How would perform the following conversions. (Reagents and conditions must be stated clearly to award maximum marks)
 - a.

$$H_3C$$
 OH H_2 OH H_2 OH

b.

c. H₃C OH → H—C ■ C—H

$$H_3C$$
 H_2C
 CH
 CH
 CH_3
 CH_3

Vajira Seneviratne

e.

f.

g.

$$\begin{array}{c|c} \mathsf{CH_3} \\ \mathsf{H} & \mathsf{C} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \end{array} \qquad \begin{array}{c} \mathsf{CH_2Br} \\ \mathsf{H} \\ \mathsf{C} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \end{array}$$

- 5. The hydrocarbon A contains 87.8 % of C and 12.2 % of hydrogen. The relative molecular weight of A is 82. A decolourise Bromine and reacts with Ni and Hydrogen to give the compound B. To react with 0.1 g of A 27.3 mL of H₂ gas is requires at standard temperature and pressure. However, B does not decolourise Bromine.
 - a. What is the empirical formula of A?
 - b. What is the molecular formula of A?
 - c. Calculate the amount of hydrogen that would react with A.
 - d. Calculate the number of double bonds in a single molecule of A.
 - e. What is the molecular formula of B?
 - f. Deduce the structures for A and B.
- 6. Consider a hydrocarbon with a molecular formula of C_XH_Y. A certain volume of this hydrocarbon was mixed with excess oxygen at room temperature and pressure which has a total volume of 200 mL. This was ignited by an electrical means and was cooled to room temperature which yielded a volume of 140 mL. The resulting gaseous mixture was passed through excess KOH and the resulting gas has a volume of 80 mL.
 - a. Show that y=4(x-1)
 - b. Determine the most probable molecular formula of the compound.
 - c. If the hydrocarbon decolourises Bromine, then what would be the accurate molecular formula of the hydrocarbon.