<u>Alkynes</u>

(1) Give IUPAC names for compounds with the following structures.

(2) Draw structures corresponding to the following IUPAC names.

- I. ethyne
- II. 3-pentyne
- III. 2-hexyne
- IV. 4-methylpent-2-yne
- V. 2-ethylhex-3-yne

- VI. 2,2-dimethylhex-3-yne
- VII. 2-ethyl-3-methyloct-4-yne
- VIII. 7-methyl-3-propyloctyne
 - IX. 3,4-dimethylpentyne
 - X. 2,5-dipropyl-3-hexyne

(3) Write the suitable reagent or the structure in the boxes given below.

(4) Do the following conversions.

i.	$CH_3CH_2Br \longrightarrow CH \equiv CH$
ii.	$CH_3CH_2CH_2CI \longrightarrow CH_3C\equiv CH$
iii.	$CH_3CH_2CH_2CH_2Br \longrightarrow CH_3C\equiv CCH_3$
iv.	CH ₃ C≡CH → CH ₃ CH ₂ CH ₃
v.	$CH_3CH_2OH \longrightarrow CH \equiv CH_2$
vi.	$CH_3CH_2CH_2CH_2OH \longrightarrow CH_3C\equiv CCH_3$
vii.	CH ₃ CH ₂ C≡CH → CH ₃ CH ₂ COCH ₃
viii.	$CH \equiv CH \longrightarrow HCBr_2CBr_2CH_3$
ix.	CH ₃ C≡CH → CH ₃ CBr ₂ CH ₃
х.	HC≡CH → CH₃CHO
xi.	CH₃C≡CH → CH₃COCH₃
xii.	$CH_3C\equiv CH \longrightarrow CH_3CH_2CH_2CH_3CH_3$
xiii.	$HC=CH \longrightarrow CH_3CH_2COCH_3$
xiv.	HC≡CH → CH ₃ C≡CCH ₃
XV.	CH₃C≡CH → CH₃C≡C-Ag
xvi.	CH ₃ CHBrCH ₂ Br → CH ₃ COCH ₃
xvii.	CH₃CH₂OH → CH₃CHO
xviii.	$CH_3CH_2Br \longrightarrow CH_3CH_2COCH_3$
xix.	$CH_3CH_2Br \longrightarrow CH_3CH_2COCH_2CH_2CH_3$
XX.	$CH_3CH_2CH_2CI \longrightarrow CH_3CH_2CH_2CH_2CH_2CH_3$

(5) Write a test to distinguish following compounds.

- i. $CH_3CH_2CH_3$ and $CH_3C\equiv CH$
- ii. $CH_2=CH_2$ and HC=CH
- iii. $CH_3CH=CH_2$ and $CH_3C=CH$
- iv. HC=CH and CH₃C=CCH₃

(6) Draw the possible structures for the following compounds.

- I. C₄ compound with 2SP hybridized orbitals with 2SP² hybridized orbitals.
- II. C₄ compound with 2SP hybridized orbitals with 2SP³ hybridized orbitals.
- III. Compound with 1SP³ hybridized orbital with 2SP² hybridized orbitals and 2SP hybridized orbitals.

(7) State whether the following statements are true or false.

- i. Alkynes with one triple bond and without any other functional group follow the general formula of C_nH_{2n-2} . ()
- ii. carbon-carbon triple bond in alkyne are stronger and longer than that of a carbon-carbon double bond.
 ()
- iii. As the polarity of alkynes is also low, their physical properties are very similar to those of the corresponding alkanes and () alkenes.
- iv. The angle between the two atoms attached to the SP hybridized carbon will be lower than 180°.
- v. First, one water molecule is added to an alkyne in the presence of Hg^{2+} and diluted H_2SO_4 to produce an enol. ()
- vi. The addition of water to alkynes takes place according to the Anti-Markovnikov's rule. ()
- vii. Terminal alkynes react with certain heavy metal ions such as Ag⁺ and Cu⁺ to form insoluble metal acetylides. ()
- viii. All alkynes can react with strong bases such as NaNH2 and active metals such as Na.

(8) Which one of the following statements about ethyne is false?

- i. All the C atoms are sp hybridized.
- ii. It contains two equivalent sp hybrid orbitals which lie in the same straight line and point in opposite directions.
- iii. The two unhybridized p orbitals lie perpendicular to each other and to these two sp orbitals.
- iv. This can form a ketone with diluted sulfuric acid in the presence of Hg²⁺.
- v. This molecule is linear in shape.
- (9) Which of the following would not react with propyne?
 - i. Br₂ water
 - ii. Cu_2Cl_2 with ammonia
 - iii. AgNO₃ with ammonia
 - iv. NaOH
 - v. Basic KMnO₄
 - (10) Characteristic reaction type of alkynes is ,
 - i. Electrophilic substitution reactions
 - ii. Electrophilic addition reactions
 - iii. Nucleophilic substitution reactions
 - iv. Nucleophilic addition reactions
 - v. Free radical reactions