Application of Integration

1. Sketch the graph of the equation $y = x^2 - 4$. Find the area bounded for each of the following

i. $y \le 5$, $x \ge 0$ and the graph

ii. $y \le 0, -2 \le x \le 2$ and the graph

iii.between the line y = 3x - 4 and the graph.

2. Find the area bounded by the curves $y = e^x$, $y = e^{-x}$ and between x = -1 and x = 1.

3. Find the area bounded by the graphs $y = x^2$ and y = |x|.

4. Find the area of the region of the xy - plane defined by the inequalities $y \le x(1-x)$ and $y \ge x-1$.

5. Find the volume generated when the area between $y = e^x$ the x-axis, y-axis and x = 1 is rotated one revolution about the x-axis.

6. The area defined by the inequalities $y \ge x^2 + 1$, $x \ge 0$, $y \le 2$ is rotated completely about the y-axis. Find the volume of the solid generated.

7. The area enclosed by the curve $y = 4x - x^2$ and the line y = 3 is rotated about the line y = 3.

Show that the volume of the solid generated is $\frac{16\pi}{15}$.

8. The area of the region defined by the inequalities $y^2 \le x, y \ge x$ is rotated about the x-axis.

Show that the volume of the solid generated is $\frac{\pi}{6}$ cubic units.

9. The area enclosed by $y = x^2$ and $y^2 = x$ is rotated about the x-axis is. Find the volume generated.

10. The area defined by the inequalities $o \le y \le x^2$, $o \le x \le 2$ is rotated about the y-axis. Find the volume generated.

- 11. Find the volume generated when the area in the first quadrant enclosed by $y = |x^2 1|$ and the line y = 1 is rotated about the line y = 1.
- 12. Find the area enclosed of the region given by $\{(x, y); x^2 + 2 \le y \le |3x|\}$
- 13. Find the area bounded by the parabola $y^2 = 4ax$ its axis and the two lines x = a and x = 2a.

14. Find the area bounded by the parabola $y^2 = 4ax$; a > 0 and the line x = a.

- 15. Find the area bounded by the curve $x^2 = 16y$ and the lines y = 1, y = 4.
- 16. Find the area bounded by the parabola $y = 4 x^2$ and x axis.

17. Find the area bounded by the curve $y^2 = 4ax$ and the line y = 2a and y - axis.

ANANDA ILLANGAKON

18. Using integration find the area of the region bounded by the line 2y = 5x + 7, x - axis and the lines x = 2 and x = 8.

19. Make a rough sketch of the curve $y = \sin x$ $0 \le x \le 2\pi$ and evaluate the area.

20. Sketch the graph of y = |x-5|. find the area bounded by x = 0 and x = 1.

21. Sketch the graph of y = |x+1| and find the area enclosed by this curve, x = -3 x = 1 and x - axis.

22. Using integration find the area of the region bounded by the curves y = |x+1| + 1, x = -3, x = 3 and y = 0.

23.Draw a rough sketch and find the area of the region bounded by two parabolas $y^2 = 8x$ and $x^2 = 8y$ by using method of integration.

24. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$. 25.Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

26. Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2.

27. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.

28. Find the area of the region enclosed between two circles $x^2 + y^2 = 1$ and $(x-1)^2 + y^2 = 1$.

29. Sketch the region common to the circle $x^2 + y^2 = 16$ and the parabola $x^2 = 6y$. Also find the area of the region using integration.

30. Sketch the region bounded by the curves $y = \sqrt{5 - x^2}$ and y = |x - 1| and find its area.

31. Find the area of the region. $\{(x, y); x^2 \le y \le x\}$

32. Find the area of the region $\{(x, y); x^2 \le y \le |x|\}$

33.Draw a rough sketch of the region $\{(x, y); y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ and find the area enclosed by the region using method of integration.

34. Find the area of the region $\{(x, y); x^2 + y^2 \le 2ax, y^2 \le ax, x \ge 0, y \ge 0\}$ 35. Find the area of the region $\{(x, y); x^2 + y^2 \le 1 \le x + y\}$

36. Find the volume of a sphere.

37. Find the volume of the solid of revolution obtained by revolving the plane region *R* bounded by $y = \sqrt{x}$, the *x*- axis and the line x = 4 about the *x*-axis

2 ANANDA ILLANGAKON