Numbers and Functions

Real Numbers

All the numbers available on the real number line are called as real numbers.

i. positive and negative whole numbers. *ii.* positive and negative improper fractions *iii.* positive and negative improper fractions *iv.* positive and negative finite decimal *vi.* positive and negative recurring decimal *vii.* zero

The set containing all real numbers is called as set of real numbers. (\mathbb{R}).

 $\mathbb{R}^+ \equiv \text{ set of positive real numbers} \qquad \mathbb{R}^+_0 \equiv \text{ set of positive real including zero}$ $\mathbb{R}^-_{\equiv} \text{ set of negative real numbers.} \qquad \mathbb{R}^-_0 \equiv \text{ set of negative real numbers including zero.}$

Natural numbers

Positive whole numbers are called as natural numbers. Set of natural numbers is denoted by \mathbb{N} .

 $\mathbb{N} = \{1, 2, 3, 4, \dots\}$

Integers

All positive and negative whole numbers with zero are called as integers. Set of integers is denoted by \mathbb{Z}

 $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$.

\mathbb{Z}^+ = set of all positive intergers.	$\mathbb{Z}^+ = \{1, 2, 3, 4, \dots\}$
$\mathbb{Z}^- =$ set of all negative integers .	$\mathbb{Z}^{-} = \{\dots, -3, -2, -1\}$
\mathbb{Z}_0^+ = set of all positive integers with zero.	$\mathbb{Z}_0^+ = \{0, 1, 2, 3\}$
\mathbb{Z}_0^- = set of all nagative integers with zero.	$\mathbb{Z}_0^- = \{\dots, -3, -2, -1, 0\}$

Rational numbers

Let x be a rational number. Then $x = \frac{p}{q}$, $p \in \mathbb{Z}$, $q \in \mathbb{N}$, (p,q) = 1 $\begin{pmatrix} \text{Highest common factor} \\ \text{of } p \text{ and } q \text{ is } 1 \end{pmatrix}$

Any simplest fraction is a rational number

 $\frac{1}{2}$, 4, $-\frac{3}{2}$, $\frac{1}{3}$, $\frac{1}{4}$,

A rational number can be a

i. Integer (4) *ii.* Finite decimal
$$\left(0.25 = \frac{1}{4}\right)$$
 iii. Recurring decimal $\left(\frac{1}{3} = 0.333....\right)$

Set of rational numbers is denoted by \mathbb{Q}

$$\mathbb{Q} = \left\{ x \mid x = \frac{p}{q}, \ p \in \mathbb{Z}, q \in \mathbb{N}, (p,q) = 1 \right\}$$

Irrational numbers.

The numbers which cannot be written in the form $\frac{p}{q}$, $p \in \mathbb{Z}$, $q \in \mathbb{N}$ are called as Irrational numbers. $\sqrt{2}, \sqrt{3}, \sqrt{13}, \pi, \dots$ These numbers cannot be expressed as fractions.

Decimal representation of an irrational number is an infinite decimal. (No patten of decimal representation).

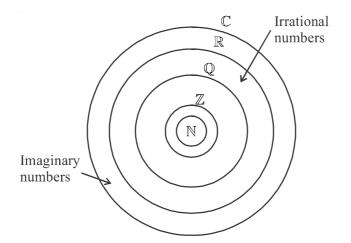
Complex numbers

 $z = x + iy, x, y \in \mathbb{R}, i = \sqrt{-1} \equiv$ imaginary unit.

2+3i, 1-5i, -3+4i, 5, 10i....

* All real numbers are complex numbers.

* *iy* is called imaginary number $2i, -3i, \dots$



FUNCTIONS

RELATIONS

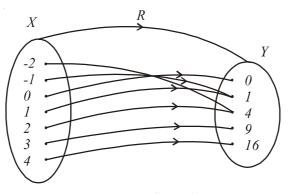
If there exists a correspondence between the elements of two given sets, then it is said that there is a relation between the given sets.

For instance

consider the sets $X = \{-1, -1, 0, 1, 2, 3, 4\}$

 $Y = \{0, 1, 4, 9, 16\}$

The elements in the set X can be jointed to the elements in the set Y under the rule "squaring" as follows



R =Squaring

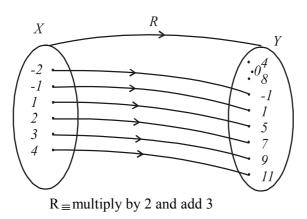
Therefore a relation means, it is a statement or a rule which joins elements in two sets.

The method of expressing the relation "R" existing between the two sets X and Y is written as

$R: X \to Y$

Domain, Co-domain, Image, Pre-image and range of a relation

Consider the following relation from the set X to Y.



Domain

* The set from which the relation starts is defined as the "Domain" of the relation. Thus the domain of the above relation *R* is *X*, where $X = \{-2, -1, 1, 2, 3, 4\}$.

Co-domain

* The set at which the relation terminates is defined as the "Co-domain" of the relation. Thus the co-domain of the above relation R is Y, where $Y = \{4,0,8,-1,1,5,7,9,11\}$.

Image

* The elements in the co-domain to which arrows are coming from the domain are defined as images.

Pre-image

The elements in the domain from which arrows are going to co-domain are defined as pre-images of the images.

Range

* The set containing all images is defined as the range of the relation.

the range of the above relation is $\{-1, 1, 5, 7, 9, 11\}$

- * The range is always a subset of the co-domain
- * A relation is known as a mapping.
- * The above arrow diagram is known as a mapping diagram.

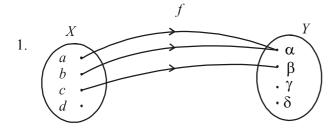
Functions

A relation is defined as function if the relation satisfies the properties mentioned below.

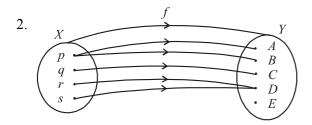
- 1. Every element in the domain has an image in the co-domain.
- 2. The image of any element in the domain must be unique.

(there sould be only one image for any element in the domain)

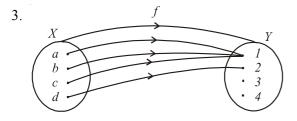
Eg :-



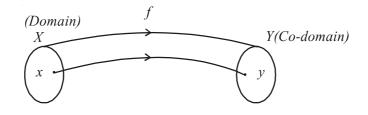
f is not a function, because the element d in X (domain) does not have an image



f is not a function, because the element p in the domain X has two images.



f is a function Note : Suppose there is a function "*f*" from set *X* to *Y*.



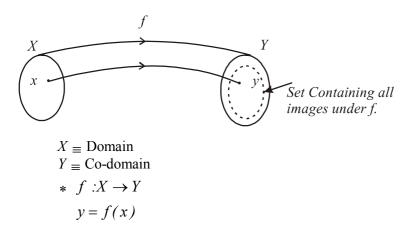
i. This function is written as $f : X \to Y$ *ii*. *y* is the image of *x* under *f*. It is written as y = f(x)

iii. f(x) is the image of x under f and f(x) is therefore in the co-domain.

iv. f(x) means that after applying the rule given by "f" on the element x, the output result.

Here, x is called as independent variable.

y is called as dependent variable.



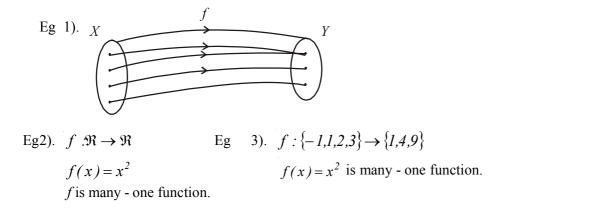
Real Functions (Real valued functions)

If the domain and co-domain of a function f'' are subsets of set of real numbers, then the function f'' is called a real function.

Types of Functions

01. Many - one function

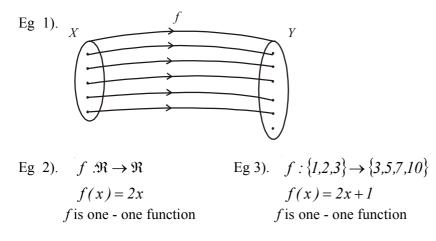
A function $f: X \to Y$ is said to be many - one if there exist at least two distinct elements in X (domain) whose images are same.



02. One-one function (injective function)

A function $f: X \rightarrow Y$ is said to be one-one or injective, if every

image in *Y*(co-domain) has only one pre- image in *X*(domain)

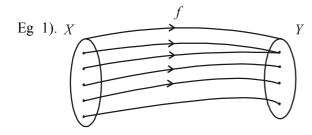


Note:

- 1. If f is is one-one function, its number of images and number of pre-images are same.
- 2. In order to show a function f is one-one take any two images $f(x_1)$ and $f(x_2)$ from co-domain, and assuming that $f(x_1) = f(x_2)$ and hence show that $x_1 = x_2$.

03. Onto Function (Surjective Function)

A function $f: X \to Y$ is said to be onto or surjective function, if every element in co-domain is an image.



f is an on to function

Eg 2). $f: \mathfrak{R} \to \mathfrak{R}$ Eg

f(x) = 2x + 6

f is an on to function

 $f(x) = x^2$ f is an on to function

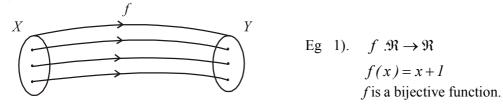
Eg 3). $f: \{-2, 2, 4, 6\} \rightarrow \{4, 16, 36\}$

Note :

In order to show a function is an onto function, we have to show for every element in co-domain, there exists a pre-image in domain.

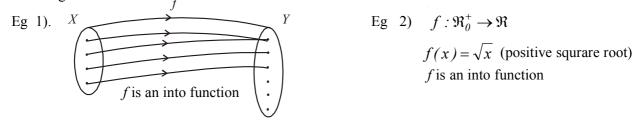
04. Bijective Function

A function $f: X \rightarrow Y$ is said to be bijective if f is both one - one and onto.



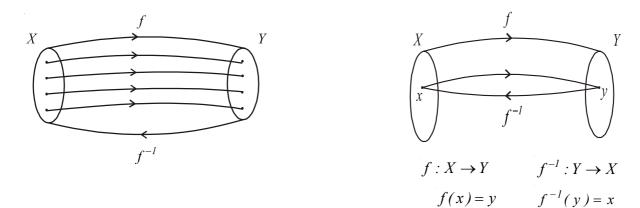
05. Into Function

A function $f: X \to Y$ is said to be an into function if there is at least one element in co-domain such that it is not an image'



06. Inverse Function

If a function $f: X \to Y$ is a bijective function (one-one and onto) then it is possible to find a rule (function) from Y to X. This function is defined as the inverse function of f and is denoted by f^{-1} .



Graph of a function

Consider the function

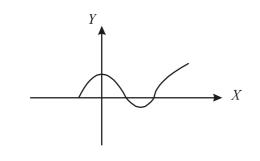
$$f: X \to Y$$
$$y = f(x)$$

We can form a set G such that $G = \{(x, f(x)) | x \in X(domain), f(x) \in Y(co-domain)\}$ the set G is defined as the graph of the function f.

Geometric Presentaion of Graph of a Function

The elements of the form (x, f(x)) of the set *G* are represented by points on the plane of the axes *X* and *Y*. Then the set *G* can be shown by collection of some points.

This collection of points on OXY plane looks like as a curve.

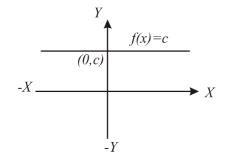


Some Important Functions

01. Constant Function

A function $f: \mathfrak{R} \to \mathfrak{R}$ defined by f(x)=c, for all $x \in \mathfrak{R}$ where c is a constant is called a constant function. Its domain is \mathfrak{R} and range is the set $\{c\}$

The graph of a constant function is a straight line parallel to x-axis when x is the independent variable.

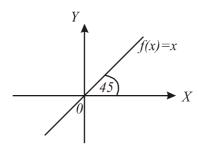


02. Identity Function (Unit Function)

The function $f: \mathfrak{R} \to \mathfrak{R}$ defined by f(x)=x for all $x \in \mathfrak{R}$, is called the identity function. Its domain is \mathfrak{R} and range is also \mathfrak{R} .

The graph of the identity function is a straight line passing through origin and inclined at an angle of

 45° with positive x - axis.

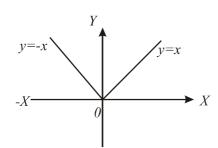


03. Modulus Function (Absolute Value Function)

The function $f: \mathfrak{R} \to \mathfrak{R}$ defined by

$$f(x) = |x| = \begin{cases} x; & \text{if } x \ge 0\\ -x; & \text{if } x < 0 \end{cases}$$

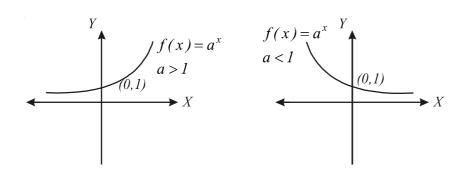
is called the absolute value function. Its domain is \Re and its range is $[0,\infty)$. The graph of the modules function is as shown below.



04. Exponential Function

Let $a \neq l$ be a positive real number.

Then the function $f: \mathfrak{R} \to \mathfrak{R}$, defined by $f(x) = a^x$ is called the exponential function. Its domain is \mathfrak{R} and range $(0,\infty)$. The graph of the exponential function is as shown below



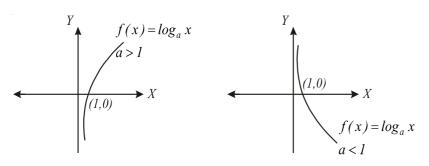
05. Logarithmic Function

Let $a \neq I$ be a positive real number.

Then the function $f:(0,\infty) \to R$ defined by

 $f(x) = log_a x$ is called the logarithmic function.

Its domain is $(0,\infty)$ and range is R. The graph of logarithmic function is as shown below.



06. Polynomial Function

A function $f: \mathfrak{R} \to \mathfrak{R}$ defined by

 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ where *n* is a positive integer and $a_0, a_1, a_2, \dots, a_n$ are real numbers is called a polynomial function.

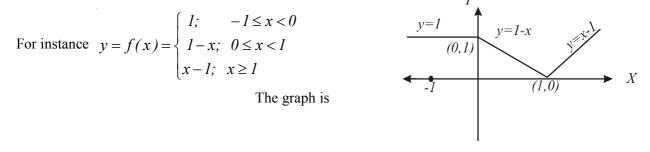
If $a_n \neq 0$ then *n* is called the degree of the polynomial. The domain of the polynomial function is R.

07.Rational Function

A function of the form $f(x) = \frac{p(x)}{q(x)}$ where p(x) and q(x) are polynomials over the set of real numbers and $q(x) \neq 0$ is called a rational function. Its domain is $\Re \setminus \{x/q(x) \neq 0\}$.

08. Piecewise function Definition

If a function $y = f(x), x \in [a, b]$ assumes different forms in different subsets of [a, b] we say that it is piecewise defined



09. Explicit and Implicit Functions

Explict Function

A function y is said to be an explicit function of x, if the dependent variable y can be expressed totally in terms of

the independent variable x.

Illustration

1. $y = x + \log x$ 2. $y = \tan x + x$ 3. $y = x^2 + 2x - 1$

Implicit Function

When the variable x and y occur together in an equation, in which y cannot be expressed explicitly in terms

of x, then y is said to be an implicit function of x.

1. $x^2 y = (1-x)(y+1)$ 2. $e^{xy} + xy - 2 = 0$

Odd and even functions

Odd function

A function f(x) is said to be odd if f(-x) = -f(x) for all x.

 $y = f(x) = \sin x$, $f(x) = x^3$ are odd functions.

Even functions

A function f(x) is said to be even if f(-x) = f(x) for all x.

 $y = f(x) = x^2$ is an even function.

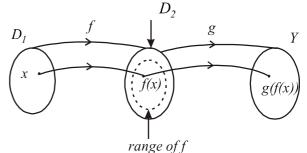
Composition of Functions

Let f and g be real functions with domain D_1 and D_2 respectively.

If range of f is a subset of domain of g.

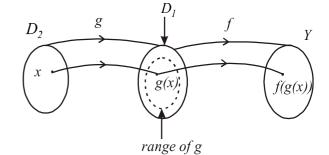
Then gof (composition of f and g) is defined as

$$(gof)(x) = g(f(x))$$
 for all $x \in D_1$



Similarly if range of g is a subset of domain of f. Then *fog* (composition of g and f) is defined as,

fog(x) = f(g(x)) for all $x \in D_2$



Operations on Functions

Let f and g be real functions with domain D_1 and D_2 respectively. Then

- *i*. The sum function (f+g) is defined by
 - (f+g)(x) = f(x) + g(x) for all $x \in D_1 \cap D_2$ The domain of f+g is $D_1 \cap D_2$
- *ii.* The difference function (*f-g*) is defined by (f-g)(x) = f(x) g(x), for all $x \in D_1 \cap D_2$ domain of f-g is $D_1 \cap D_2$.

iii. The product function fg is defined by (fg)(x) = f(x).g(x), for all $x \in D_1 \cap D_2$ domain of fg is $D_1 \cap D_2$

iv. The quotient function $\binom{f}{g}$ is defined by

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \text{ for all } x \in D_1 \cap D_2 \setminus \{x : g(x) = 0\}. \text{ The domain of } \frac{f}{g} \text{ is } D_1 \cap D_2 \setminus \{x : g(x) = 0\}.$$

v. The scalar multiple function *cf* is defined by (cf)x = c.f(x), for all $x \in D_I$. The domain of *Cf* is D_1 .

Exercise

1*a*.Find the domain and range of the following functions.

i.
$$f(x) = \sqrt{x^3 + 1}$$

ii. $f(x) = \sqrt{(x-2)(x+3)}$

b.Two functions *f* and *g* are defined as follows.

$$f : \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x - 1 ; x < 1 \\ 1 ; 1 \le x < 3 \\ 1 - x ; x \ge 3 \end{cases}$$

$$g : \mathbb{R} \to \mathbb{R}$$

$$g(x) = \begin{cases} x^2 + 1 ; x < 2 \\ x + 1 ; x \ge 2 \end{cases}$$

Express the function f(x) + g(x) as in the above form.

c.when $x \in \mathbb{R}_0^+$ let $f(x) = x^2$. Find the function $f^{-1}(x)$. Sketch the graph of $f(x) = x^2$ and hence sketch the graph of $f^{-1}(x)$.

2. Find the implied domain and range of the following real valued functions.

i.
$$f(x) = \sqrt{4x^2 - 100}$$
 ii. $f(x) = 3 + x - \frac{x^2}{x - 1}$

3.Sketch the graph of the function f(x) given by

$$f(x) = \begin{cases} x^2 - 1 \ ; \ x < 0 \\ -3 \ ; \ 0 \le x < 3 \\ 2x + 1 \ ; \ x \ge 3 \end{cases}$$

4. Find the domain and range of the following functions.

i.
$$f(x) = x - 2$$
 ii. $g(x) = -2x$ iii. $f(x) = x^2 - 4$ iv. $g(x) = -x^2 + 4$ v. $f(x) = x^2 - 2$
vi. $f(x) = -\frac{1}{2}x^2 + 2x$ vii. $f(x) = x^3$ viii. $f(x) = \sqrt{x}$ ix. $f(x) = \sqrt{x - 2}$ x. $f(x) = \sqrt{x + 2}$
xi. $f(x) = \sqrt{x - 2} + 1$ xii. $f(x) = \sin x$ xiii. $f(x) = -2\sin x$ xiv. $f(x) = \cos x$ xv. $f(x) = \cos^2 x$

ANANDA ILLANGAKOON

 $\begin{aligned} \text{xvi. } f(x) &= e^x \quad \text{xvii. } f(x) = e^x - 2 \quad \text{xviii. } f(x) = e^{-x} \quad \text{xix. } f(x) = e^{-x} + 2 \quad \text{xx. } f(x) = 2e^x \\ \text{xxi. } f(x) &= \frac{1}{e^x + 1} \quad \text{xxii. } f(x) = |x| \quad \text{xxiii. } f(x) = |x - 2| \quad \text{xxiv. } f(x) = |x| - 2 \quad \text{xxv. } f(x) = |x - 3| - 1 \end{aligned}$

5.*i*. Let $x = \frac{1 - y^2}{1 + y^2}$. Using this, form a function as y = f(x), indication domain and range.

ii. A function f is defined as

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = \frac{x}{2x+1}$$

Find the implied (natural) domain and range of this function.

Show also that the function f is a bijective function. Find f^{-1} .

6.Find the domain and range of the function defined by

$$f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$$

7.Let $f(x) = 5 - 3x^2$, and $g(x) = \sqrt{x - 2}$ Then find fog.

8.Let
$$f(x) = \sqrt{x+2} + \frac{1}{\sqrt{3-x}}$$

Find the domain of the function *f*.

9. For each of the following functions
$$f(x)$$
 and $g(x)$ find
(1) fog (2) gof, (3) fof (4) gog
1. $f(x) = 2x + 3$ $g(x) = 3x$
ii. $f(x) = 3x + 1$ $g(x) = x^2$
iii. $f(x) = x^2$, $g(x) = x^2 + 4$
iv. $f(x) = \frac{x}{x-1}$, $g(x) = -\frac{4}{x}$
v. $f(x) = \sqrt{x}$, $g(x) = 2x + 3$ vi. $f(x) = x^2 + 1$, $g(x) = \sqrt{x-1}$
vii. $f(x) = \frac{x-5}{x+1}$, $g(x) = \frac{x+2}{x-3}$
viii. $f(x) = -x$, $g(x) = 2x - 4$ ix. $f(x) = x + 1$, $g(x) = x^2 + 4$
x. $f(x) = \frac{1}{x+3}$, $g(x) = -\frac{2}{x}$
xi. $f(x) = \frac{x}{x+1}$, $g(x) = \frac{1}{x^2-4}$

10. Let
$$f(x) = 2x$$
 and $g(x) = x-1$
Find

a.(f+g)(x) b.(f-g)(x) c.(fg)(x) $d.\left(\frac{f}{g}\right)(x)$ e.(kf)(x), where k is a constant.