### KMnO<sub>4</sub>-Based Titrations

Titrations involving **potassium permanganate** (KMnO<sub>4</sub>) are a class of **redox titrations** known as **permanganometry**. KMnO<sub>4</sub> acts as a **strong oxidizing agent**, especially in **acidic medium**, and has the advantage of being **self-indicating** due to its intense purple color.

#### Why KMnO<sub>4</sub> Is Not a Primary Standard?

#### 1. Instability on Storage

- KMnO<sub>4</sub> slowly decomposes over time, especially in the presence of light and heat.
- It reacts with traces of organic matter or dust in the air or even in distilled water, which alters its concentration. Its solution does **not remain stable for long periods**.

#### 2. Impurities in the Solid

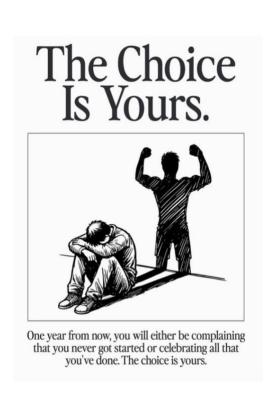
- Commercial KMnO<sub>4</sub> may contain **MnO<sub>2</sub>** (**manganese dioxide**) or other manganese oxides as impurities.
- Intensly coloured and difficult to prepare a standard solution.
- Cannot acidify with HCl as it evolves Cl<sub>2</sub> gas.

#### KMnO<sub>4</sub> as an Oxidizing Agent:

- **Medium**: Acidic (usually H<sub>2</sub>SO<sub>4</sub>) required to prevent any side reactions.
- Color: Purple  $(MnO_4^-) \rightarrow Colorless (Mn^{2+})$
- **Self-indicator**: Endpoint is the first **permanent pink** color.

# Half-Equation in Acidic Medium:

# **Detailed Exam Related Examples of Titrations**


| l. KI | MnO <sub>4</sub> vs Fe <sup>2+</sup>                                                                       |
|-------|------------------------------------------------------------------------------------------------------------|
| •     | Medium: Dilute H <sub>2</sub> SO <sub>4</sub> Purpose: Determine Fe <sup>2+</sup> concentration. Equation: |
|       |                                                                                                            |
| •     | Endpoint: Pale green to permanent pink.                                                                    |
| 2. KN | MnO4 vs Oxalic Acid                                                                                        |
| •     | <b>Medium</b> : Warm dilute H <sub>2</sub> SO <sub>4</sub> (60–70 °C) <b>Equation</b> :                    |
|       |                                                                                                            |
| •     | Slow at room temperature, needs warming. Endpoint: Colorless to permanent pink.                            |
| 3. KN | MnO <sub>4</sub> vs H <sub>2</sub> O <sub>2</sub>                                                          |
| •     | Equation:                                                                                                  |
|       |                                                                                                            |
| •     | Used for determining hydrogen peroxide concentration.  Endpoint: Colorless to permanent pink.              |

| •     | Equation:                                                                                             |  |  |
|-------|-------------------------------------------------------------------------------------------------------|--|--|
|       |                                                                                                       |  |  |
| •     | Used in: Food preservative analysis. Endpoint: Colorless to permanent pink.                           |  |  |
| s. KN | MnO <sub>4</sub> vs NO <sub>2</sub> (Nitrite)                                                         |  |  |
| •     | Equation:                                                                                             |  |  |
|       |                                                                                                       |  |  |
| •     | Used in: Water and food quality analysis (e.g., curing meats). Endpoint: Colorless to permanent pink. |  |  |
| . KN  | . KMnO4 vs S²- (Sulfide)                                                                              |  |  |
| •     | Equation                                                                                              |  |  |
|       |                                                                                                       |  |  |
| •     | Used in: Wastewater and ore analysis. Endpoint: Colorless to permanent pink.                          |  |  |

4. KMnO<sub>4</sub> vs SO<sub>3</sub><sup>2-</sup> (Sulfite)

## **Endpoint Detection**

- No indicator needed.
- Colorless to Pink transition.
- Stop titration when a **faint pink persists** for  $\sim$ 30 seconds.
- Use a candel light (torch light) to record the burette reading

