
Vajira Seneviratne (Ph				
V	. D- Cantab.) Vajira Seneviratr		``	tne
General	Certificate of Edu	cation (Adv. L	evel) Examination	ation, 2025 the the
Vajira Seneviratne (Ph Vajira Seneviratne (Ph Va	a. D- Cantab.) Vajira Seneviratr a. D- Cantab.) Vajira Seneviratr b. D- Cantab.) Vajira Seneviratr Vajira Seneviratr	ne (Ph. D- Cantab.) Vaji	ra Seneviratne (Ph. D- ra Seneviratne (Ph. D-	Cantab.) Vajira Seneviratne Cantab.) Vajira Seneviratne Cantab.) Vajira Seneviratne
Vaj Chemist		ne (Ph. D- Cantab.) Vaji	\mathbf{r} One hour a	nd 15 minutes he
	. D- Cantab.) Vajira Senevirati . D- Cantab.) Vajira Senevirati			
 * Answer all q * The use of co * Write your es * Carefully fol * For each que 	n paper consists of 08 pag uestions. alculators is not allowed. xamination number in the low the other instructions estion from 1 to 50, select (4), or (5) and mark it wit	e space provided on s provided on the bo t the correct or most	ack of the answer so t appropriate answe	er from the choices
	constant: R = 8.314 J K ⁻¹	mol ⁻¹ Planck's	constant = 6.626	< 10 ⁻³⁴ J s
Avogadro Con	stant. $N_0 = 6.022 \times 10^{23}$ m	nol ⁻¹ Speed of	f light: $c = 3 \times 10^8$ r	ns ⁻¹
C	stant, $N_a = 6.022 \times 10^{23}$ m	•	f light: $c = 3 \times 10^8$ n	
1.) The two scientists	who discovered the cause	e or phenomenon the	at led to the followi	
1.) The two scientists (I) Red fluoresc	who discovered the cause ence appearing in perforat	e or phenomenon the ted cathode ray tube	at led to the followi	
1.) The two scientists (I) Red fluoresc	who discovered the cause	e or phenomenon the ted cathode ray tube	at led to the followi	
1.) The two scientists (I) Red fluoresc (II) Electromag	who discovered the cause ence appearing in perform netic radiation is quantized	e or phenomenon the ted cathode ray tube d.	at led to the followi	
1.) The two scientists (I) Red fluoresc (II) Electromage (1) William Crook	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie	e or phenomenon the ted cathode ray tube d. (2) Goldstein ar	at led to the followi e. nd Max Planck	ng observations were,
1.) The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck	e or phenomenon the ted cathode ray tube d. (2) Goldstein ar	at led to the followi	ng observations were,
1.) The two scientists (I) Red fluoresc (II) Electromag (1) William Crook	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck	e or phenomenon the ted cathode ray tube d. (2) Goldstein ar	at led to the followi e. nd Max Planck	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck	e or phenomenon the ted cathode ray tube d. (2) Goldstein ar	at led to the followi e. nd Max Planck	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook (5) Thomson and H 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck	e or phenomenon that ted cathode ray tube d. (2) Goldstein ar (4) Goldstein ar	at led to the followi o. nd Max Planck nd Henry Becquerel	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook (5) Thomson and H 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck Henry Becquerel	e or phenomenon that ted cathode ray tube d. (2) Goldstein ar (4) Goldstein ar	at led to the followi o. nd Max Planck nd Henry Becquerel	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook (5) Thomson and H Which of these statements 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck Henry Becquerel	e or phenomenon that ted cathode ray tube d. (2) Goldstein ar (4) Goldstein ar	at led to the followi o. nd Max Planck nd Henry Becquerel molecules?	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook (5) Thomson and H Which of these statements 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck Henry Becquerel	e or phenomenon that ted cathode ray tube d. (2) Goldstein ar (4) Goldstein ar	at led to the followi o. nd Max Planck nd Henry Becquerel molecules?	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook (5) Thomson and H Which of these statements 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck Henry Becquerel	e or phenomenon that ted cathode ray tube d. (2) Goldstein ar (4) Goldstein ar	at led to the followi o. nd Max Planck nd Henry Becquerel molecules?	ng observations were,
 The two scientists (I) Red fluoresc (II) Electromage (1) William Crook (3) William Crook (5) Thomson and H Which of these statements 	who discovered the cause ence appearing in perform netic radiation is quantized es and Louis de Broglie es and Max Planck Henry Becquerel	e or phenomenon that ted cathode ray tube d. (2) Goldstein ar (4) Goldstein ar	at led to the followi o. nd Max Planck nd Henry Becquerel molecules?	ng observations were,

Vajira N Seneviratne Ph.D (Cantab)

Page | 1

3.) The answer that correctly shows the shape around the atoms O¹, N and S of the ion;

- (1) linear, trigonal planar, tetrahedral (2) tetrahedral, trig
 - (2) tetrahedral, trigonal planar, tetrahedral
 - (3) tetrahedral, tetrahedral, tetrahedral
- edral (4) angular, pyramidal, tetrahedral
- (5) angular, trigonal planar, tetrahedral

4.) Which of the following sets of quantum numbers describes the easily removable electrons of a neutral gaseous **Fe** atom?

- (1) n=3, l=2, $m_l = 0$, $m_s = +\frac{1}{2}$ (2) n=4, l=0, $m_l = 0$, $m_s = +\frac{1}{2}$ (3) n=3, l=2, $m_l = -1$, $m_s = -\frac{1}{2}$ (4) n=2, l=1, $m_l = 0$, $m_s = +\frac{1}{2}$ (5) n=4, l=0, $m_l = 1$, $m_s = -\frac{1}{2}$
- 5.) Which of the following statements is most correct regarding bonds?
 - (1) Sigma (σ) bonds formed by lateral overlapping are more stable than pi (π) bonds.
 - (2) A sigma (σ) bond or a pi (π) bond can be formed by overlapping *s* and *p* orbitals.
 - (3) pi (π) bonds are formed only by lateral overlapping of two unhybridized dumbbell-shaped 2*p* orbitals.
 - (4) Axes of the two *p* orbitals that participate in forming a pi (π) bond are parallel to each other, while they are perpendicular to the axes of the *p* orbitals that involve in forming the second pi (π) bond.
 - (5) As axes of two hybridized orbitals are located along one axis, they can undergo both linear and lateral overlapping.
- 6.) Which answer depicts the increasing order of bond length of the bonds named **a**, **b**, **c**, **d** and **e** of the molecule,

$$CH_3 \xrightarrow{a} CH_2 \xrightarrow{b} C \xrightarrow{c} C \xrightarrow{d} CH \xrightarrow{e} CH_2$$

- (1) a < b < d < e < c (2) c < e < d < a < b (3) c < d < e < b < a(4) c < e < d < b < a (5) d < c < e < b < a
- 7.) The oxygen volume percentage of normal air is 20 %. If the pressure is 1×10^{5} Nm⁻² and temperature is 27 °C of normal air, what would be the concentration of oxygen gas in it in moldm⁻³?
 - (1) 8 (2) 4 (3) 8×10^{-1} (4) 4×10^{-3} (5) 40

Vajira N Seneviratne Ph.D (Cantab)

Page | 2

8.) When 12.25 g of potassium chlorite (KClO₃) decomposes according to the reaction:

 $2KClO_3(s) \longrightarrow 2KCl(s) + 3O_2(g)$

What volume of oxygen gas (O₂) is produced at STP (0 °C, 1 atm) ?

(Given: Molar mass of KClO₃ = 122.5 g mol⁻¹; Molar volume at STP = 22.4 L mol⁻¹)

(1) 0.448 L (2) 0.896 L (3) 1.12 L (4) 3.36 L (5) 4.48 L

9.) The correct increasing order of bond angle is ?

(1) $XeF_4 < NO_2 < NO_2^- < NO_3^-$ (2) $XeF_4 < NO_2^- < NO_2 < NO_3^-$ (3) $XeF_4 < NO_2^- < NO_3^- < NO_2$ (4) $NO_3^- < NO_2 < XeF_4$ (5) $NO_2^- < NO_2 < XeF_4 < NO_3^-$

10.) A special property that occurs due to Hydrogen bonds is,

(1) Decreasing of bond angle of H_2O than the bond angle of NH_3 .

(2) Increasing boiling points of HCl, HBr and HI in given order.

(3) Floating of ice on water.

(4) Having different boiling points for the isomers of C_5H_{12} .

(5) All the above.

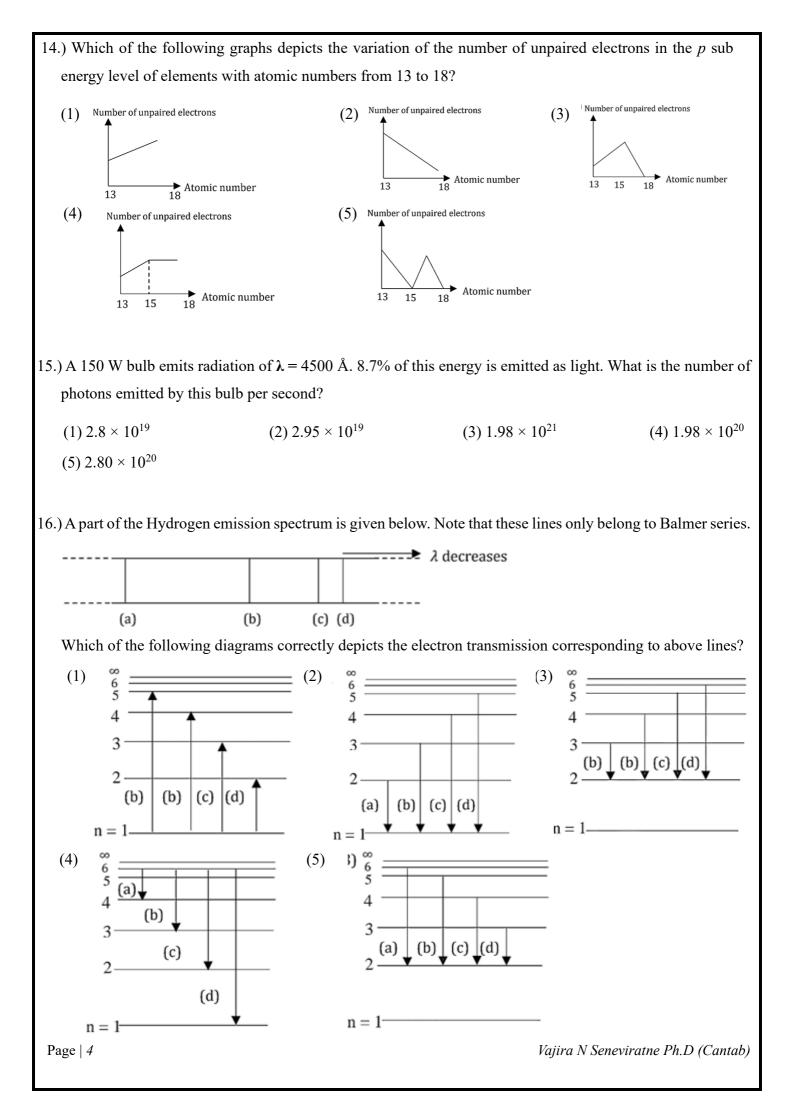
- 11.) A mixture of NaCl and KCl has a total mass of 6.6 g. When treated with excess silver nitrate (AgNO₃), it produces 14.3 g of AgCl precipitate. Calculate the mass of NaCl in the mixture. Given that, Molar masses of Ag = 108 g mol⁻¹, Na = 23 g mol⁻¹, Cl = 35 g mol⁻¹ and K = 39 g mol⁻¹.
 - (1) 2.90 g (2) 3.25 g (3) 4.10 g (4) 1.80 g (5) 5.56 g

12.) Which of the following has the highest 4th ionization energy?

(1) Al (2) Si (3) C (4) B (5) N

13.) Shapes of F_20 , H_30^+ , and ClF_4^- are respectively,

(1) Linear, Trigonal planar, Tetrahedral


(2) Angular, Pyramidal, Square planar

(3) Angular, Trigonal planar, Square planar

(4) Angular, Trigonal planar, Tetrahedral

(5) Linear, Pyramidal, Square planar Page | *3*

Vajira N Seneviratne Ph.D (Cantab)

,	nt belonging to the secon noment. What is the grou			ovalent molecule MCl3
(1) 2	(2) 13	(3) 14	(4) 15	(5) 16
18.) Which of the f	ollowing quantum numb	ers will not be suitable	e for the blank?	
Set of quantum	n numbers: {3, 2,	, -1/2}		
(1) 3	(2) +2	(3) -2	(4) 0	(5) -1
19.) Which compou	and is least likely to have	ionic bonding?		
(1) KI	(2) BaO	(3) SO ₂	(4) $SrCl_2$	(5) Ca ₃ N ₂
20.) The composition (moldm ⁻³) ?. (1) 3.2×10^{-2}	on of Na ⁺ ions in an aqueo (2) 1.6 \times 10 ⁻³	bus solution of Na ₂ CO ₃ (3) 1.6×10^{-2}		
(1) 3.2×10^{-2}	(2) 1.6×10^{-5}	(3) 1.6×10^{-2}	(4) 8×10^{-5}	(5) None of these

* For question numbers 21 to 25 follow the instructions below.

Summary of instructions											
(1)	(2)	(3)	(4)	(5)							
Only a) and (b)	Only (b) and (c)	Only (c) and (d)	Only (d) and (a)	Any other							
are correct.	are correct.	are correct.	are correct.	number or combination of responses is correct.							

21.) Which of the following has similar hybridization around the central atom but different molecular geometry,

(a) SF_4 (b) SO_4^{2-} (c) NH_3 (d) HCN

- 22.) Which of the following statements is/are correct?
 - (a) Pure Hydrogen bonding can occur in molecules containing H–F, H–O, or H–N bonds, but it is strongest in H–F due to high electronegativity.
 - (b) Oxidation number of oxygen in OF_2 is +2.
 - (c) Cathode rays (electron beams) are deflected by electric and magnetic fields, but X-rays are not.
 - (d) According to de Broglie's equation, if the kinetic energy of an electron increases, its wavelength decreases.

23.) $2A(g) + 3B(g) \rightarrow D(g) + 2E(g)$ Consider this reaction.,

An equal number of moles of A and B were added to a closed vessel. The reaction proceeded until one compound was completely consumed and 0.5 mol of the other compound remained. Which of the following statement **is/are** correct?

(a) Remaining reactant was B.

- (b) Remaining reactant was A.
- (c) Initial system had 1.5 mol each from A and B.
- (d) Final system had 1.5 mol of E.
- 24.) The structure/s that obey octet rule is/are,
 - (a) NO (b) O_3 (c) N_2O (d) AlCl₃

25.) 5.85 g of NaCl was dissolved in 500 cm³ of water. Which of the following statements **is/are** correct regarding this solution? (Density of water 1 gcm⁻³)

 $[Cl = 58.5 \text{ g mol}^{-1}, Na = 23 \text{ g mol}^{-1}]$

- (a) The molarity of the NaCl solution is 0.2 mol dm^{-3} .
- (b) The mass fraction of NaCl in the solution is 0.0115.
- (c) The mole fraction of NaCl in the solution is 1/501.
- (d) The percentage by mass of NaCl in the solution is 1.15%.

* Follow the instructions below for questions 26 to 30.

Response	First Statement	Second Statement					
(1)	True.	True and correctly explains the first statement.					
(2)	True.	True but does not explain the first statement correctly.					
(3)	True.	False.					
(4)	False.	True.					
(5)	False.	False.					

	First Statement	Second statement
26)	The dipole moment of NF ₃ is larger than	Difference of electronegativity between N and
	that of NH _{3.}	F is approximately equal to that value between
		N and H.
27)	The solubility of $Br_2(l)$ increases when	Ion - induced dipole moment is formed in
	KBr is added.	between Br ₂ and Br ⁻ .
28)	All ionic compounds dissolve completely in water.	A solution of water-soluble ionic compounds can conduct electricity.
29)	CaCO ₃ decomposes at a lower temperature than SrCO ₃ .	The polarizing effect of a cation increases with decreasing size and increasing charge.
30)	All molecules in an ideal gas move at same speed.	Only intermolecular repulsive forces are present in an ideal gas.

The Periodic Table

1																	2
H																	He
3	4											5	6	7	8	9	10
Li	Be											B	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg			_				_				Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lb	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr