Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne neviratne (Ph. D. Cantah) Vajira Seneviratne (Ph. D. ratne General Certificate of Education (Adv. Level) Examination, 2025 ratne Vajira Seneviratne (Ph. D- Cantab.) vajira Seneviratne (Ph. D- Cantab.) vajira Seneviratne (Ph. D- Cantab.) vajira Seneviratne Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne Vaj Vajira Seneviratne (Ph. D- Cantab.) V **Chemistry -II** One hour and 10 minutes Vajira Seneviratne (Ph. D- Cantab.) tne Vajira Seneviratne (Ph. D- Cantab.) Vajira Seneviratne

- This question paper consists of 08 pages.
- Answer all the questions.
- The use of calculators is not permitted.
- Write your examination number in the space provided on the answer script

Name:

Universal gas constant: $R = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Planck's constant = $6.626 \times 10^{-34} \text{ J s}$

Avogadro Constant, $N_a = 6.022 \times 10^{23} \text{ mol}^{-1}$ Speed of light: $c = 3 \times 10^8 \text{ ms}^{-1}$

Section A – Structured Essay

- 01.(a) State whether the following statements are **true** or **false.**
 - i. All linear molecules are non-polar. (
 - ii. Ionic bonds are generally stronger than covalent bonds. (
 - iii. The shape of a molecule is determined solely by the bonded atoms. (
 - iv. In an atom, electrons with higher principal quantum numbers have lower energy. (
 - v. The Pauli Exclusion Principle states that no two electrons in an atom can have the same set of four quantum numbers. ()
 - vi.The emission spectrum of hydrogen is continuous. (

vii.In the Bohr model, electrons in higher energy levels have lower potential energy. (

(b) Structure of a certain compound is given below. All atoms except hydrogen (**H**) are p-block elements from the first 20 elements (Periods 2–3). Elements **Y** and **Z** belong to the same group, with **Z** in Period 2 and **Y** in Period 3. Elements **X** and **Z** are consecutive elements in the periodic table. All atoms satisfy the octet rule, and the electronegativity of **X**, **Y**, and **Z** is greater than that of hydrogen. Both **Z** atoms one bonded to **X** and **Y** and other one bonded to **Y** and **H** exhibit sp^2 hybridization.

X — Z — Y = Z — H X i) Identify elements X , Y , and Z specifying their groups and periods.	
ii) Assign formal charges to the two charged atoms and justify your reasoning.	
iii) Draw the Lewis structure, including lone pairs and charges, and propose one acceptable reson structure.	
iv) Predict the molecular geometry and electron-pair geometry for both ${\bf Z}$ atoms, ${\bf Y}$, and ${\bf X}$ using VS theory.	SEPR
	•••
	• • • • • •
	· • • • • •
	· • • • •

	utron is moving with a velocity of 1.5×10^4 ms ⁻¹ . Take plank constant (h) = 6.6×10^{-34} Js, mass of ron (m _n) = 1.6×10^{-27} kg, and mass of electron (m _e) = 9×10^{-31} kg.
i)	Calculate the momentum of the neutron.
;;)	Find the de Broglie wavelength of the neutron.
11)	That the de Brogne wavelength of the neutron.
iii)	An electron has the same wavelength as this neutron. Without calculating, compare their velocities.
	Justify your answer.
) a) Na ₂	CO ₃ , NaOH and inert material are present in a solid mixture. A 250 cm ³ of solution made by
	olving 5 g of mixture dissolved in water. The molarity of Na ₂ CO ₃ , and NaOH in the solution is mol dm ⁻³ and 0.2 mol dm ⁻³ respectively.
	culate the number of moles of Na ₂ CO ₃ , and NaOH present in the solution.

ii) Calculate the mass percentage of Na ₂ CO ₃ , and NaOH in the solid mixture.
(Na=23 g mol ⁻¹ , H= 1 g mol ⁻¹ , O=16 g mol ⁻¹ , C= 12 g mol ⁻¹)
iii) Report the concentration of Na ₂ CO ₃ in ppm.
my report the concentration of rivize cy in ppin.
b) At 300 K and 3.0×10^5 Nm ⁻² , a vessel of 2.0 m ³ contains gas X . At 300 K and 5.0×10^5 Nm ⁻² , a vessel of 2.0 m ³ contains gas X .
of 3.0 m³ contains gas Y. Both vessels are connected through a thin tube allow both gases to mix with
each other completely. They do not react with each other. Assume that the volume of the thin tube is negligible.
i) If the temperature is unchanged calculate the total pressure of the connected vessels
i) If the temperature is unchanged, calculate the total pressure of the connected vessels.
i) If the temperature is unchanged, calculate the total pressure of the connected vessels.
i) If the temperature is unchanged, calculate the total pressure of the connected vessels.
i) If the temperature is unchanged, calculate the total pressure of the connected vessels.

•••••	
v) By keepir	g the total volume of the two vessels constant, calculate the total pressure of the gas X ,
the conne	ted vessels, when the temperature of the gas mixture is increased up to 350K.
v) Write two	assumptions you made here.
v) Write two	assumptions you made here.
v) Write two	assumptions you made here.

Section B - Essay

- 03.) a) i.) Write the Charles law.
 - ii) CH₄(g) contains in a rigid vessel A of 4.157 dm³ at 227 $^{\circ}$ C and 1.5 × 10 5 Pa pressure. 1 mol of O₂(g) contains in another rigid vessel B at 27 $^{\circ}$ C and 2 × 10 5 Pa. Both vessels joined using thin tube of negligible volume. The tap was closed initially.
 - I) Calculate,
 - i) Number of moles of CH₄(g) in vessel A.
 - ii) Volume of Vessel B.
 - II) Temperature of the whole system was reduced to 7 °C after opening the tap. There is no reaction between CH₄ (g) and O₂(g) Calculate following.
 - i) Total pressure of the system.
 - ii) Mole fractions of CH₄(g) and O₂ (g).
 - III) Temperature of the above system was taken to 127 $^{\circ}$ C after open the tap. CH₄ (g) undergoes combustion with O₂ (g) and from CO₂ (g) and H₂O (g).

Consider this system and calculate,

- i) Calculate number of moles of each gas in the system.
- ii) Calculate total number of moles in the system.
- iii) Calculate the total pressure of the system
- b) Solid sulfur (S) reacts with nitric acid (HNO₃) to produce sulfuric acid solution (H₂SO₄), nitrogen dioxide gas (NO₂), and water (H₂O).
 - i) Assign the oxidation numbers of sulfur and nitrogen in the reactants and products.
 - ii) Identify which elements are oxidized and reduced.
 - iii) Balance the chemical equation using half reaction method.
- c) The PO_4^{3-} ion concentration in a K_3PO_4 solution is 285 ppm. The temperature of the solution is 25 °C. (Atomic masses: $K = 39 \text{ g mol}^{-1}$, $P = 31 \text{ g mol}^{-1}$, $O = 16 \text{ g mol}^{-1}$)
 - i) Find the molarity of PO_4^{3-} ions in moldm⁻³.
 - ii) Find the composition of K⁺ ions in ppm.
- d) A sample of iron (II) is suspected to be partially oxidized to iron (III) ions (Fe³⁺). An experiment was performed to determine the amount of Fe²⁺ present using a standard solution of potassium permanganate (KMnO₄). So that, Fe (II) oxidized to Fe (III) by reducing MnO₄⁻ to Mn²⁺.

$$(Fe = 56 \text{ g mol}^{-1})$$

- **Procedure:** 27.00 cm³ of the iron solution is reacted against a 0.6 mol dm⁻³ solution of KMnO₄. It requires 2.25 cm³ of the KMnO₄ solution to react completely.

 Answer the following questions.
- i) Write the balanced chemical equation for the reaction between $\,MnO_4^-$ and Fe^{2^+} in acidic medium.
- ii) Calculate the number of moles of MnO₄⁻ used in the experiment.
- iii) Calculate the number of moles of Fe^{2+} that reacted with the MnO_4^- solution.
- iv) If the original iron solution was assumed to be $0.30 \text{ mol dm}^{-3} \text{ Fe}^{2+}$, calculate the number of moles of Fe²⁺ that would have been present in the 27.00 cm^3 solution if it were pure.
- v) Calculate the percentage purity (by moles) of the Fe²⁺ solution.

The Periodic Table

1]																2
Н																	Не
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											A1	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lb	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr