Potassium Dichromate (K2Cr2O7) Based Titrations

Introduction

Potassium dichromate (K₂Cr₂O₇) is an orange-colored crystalline solid used as a powerful oxidizing agent in acidic medium, primarily in redox titrations. Unlike potassium permanganate (KMnO₄), it is chemically stable and can be used as a primary standard.

Why K₂Cr₂O₇ is a Primary Standard?

A primary standard is a reagent that is:

- Pure and stable
- Non-hygroscopic
- Has a known and fixed composition
- Has a high molar mass

K₂Cr₂O₇ satisfies all these conditions:

- It is chemically pure and available in stable crystalline form.
- It does not absorb moisture from the air (non-hygroscopic).
- It has a high molar mass (294 g/mol) which reduces weighing errors.
- Its solutions remain stable over time if protected from light.

Balanced Redox Reaction in Acidic Medium

In acidic conditions, dichromate ions (Cr₂O₇²⁻)

Each mole of dichromate accepts 6 electrons.

Common Examples of K₂Cr₂O₇ Titrations

1. Estimation of Ferrous Sulfate (FeSO ₄) or Mohr's Salt
Reaction:
Indicator: Diphenylamine sulfonate (color change:
2. Estimation of Iron in an Alloy
2. Estimation of Iton in an imag
• The iron is dissolved in acid and reduced to Fe ²⁺ before titration.
Same reaction and indicators as above.
3. Estimation of Tin(II) Chloride (SnCl ₂)
Reaction:
4. Estimation of Hydrogen Peroxide (H ₂ O ₂)
In acidic medium, H ₂ O ₂ is oxidized to O ₂ .
Reaction:

5. Estimation of Iodide (I ⁻)
Reaction:
Liberated I ₂ can then be titrated with sodium thiosulfate (iodometric titration).
Indicators Use
Since K ₂ Cr ₂ O ₇ is not self-indicating, external or internal redox indicators are used:
Diphenylamine sulfonate
These indicators undergo a visible color change when the oxidation is complete.
Advantages of K ₂ Cr ₂ O ₇ in Titration
High purity and stability: Suitable as a primary standard.
• Stable in solution: Does not decompose over time like KMnO ₄ .

Predictable oxidation behavior.

Sharp endpoint with proper indicator.

Disadvantages

- Toxic and carcinogenic: Cr(VI) compounds are hazardous and environmentally unfriendly.
- Not self-indicating: Requires separate indicators.

Precautions

- Always use dilute sulfuric acid as the medium (not HCl, which may react to form Cl₂).
- Handle with gloves and dispose of waste responsibly due to chromium toxicity.