Polynomial Functions.(Tute 1)

Long Division

1. Show that the polynomial function $f(x) = x^3 + 2x^2 + x + 2$ is divided by (x+1) the quotient is $(x^2 + x)$ and the remainder is 2. Show also that f(-1) = 2.

2.Let $f(x) = 2x^3 + x^2 + x + 3$. Let f(x) is divided by (2x-1). Then show that the quotient is $(x^2 + x + 1)$ and the remainder is 4. Also find $f\left(\frac{1}{2}\right)$. what can you conclude by this result.

3. The polynomial function f(x) is defined as $f(x) = 2x^3 - 2x^2 + 8x + 3$. Show that when f(x) is divided by (2x-2) the quotient is $(x^2 + 4)$ and remainder is 11. Determine the value *a* so that f(a) gives the remainder above.

4. Show that when $f(x) = x^3 + 2x^2 + 2x + 2$ is divided by $(x^2 + 1)$ the quotient is (x + 2) and remainder is x.

5. Show that when $f(x) = x^4 + 2x$ is divided by $(x^2 - 1)$ the remainder is (2x + 1) and the quotient is $(x^2 + 1)$. Is it possible to find a relationship among f(x), $(x^2 - 1)$, $(x^2 + 1)$ and (2x + 1). If so state this relationship.

6. Show that when $f(x) = x^4 + x^3 + x^2 + 2x + 3$ is divided by $(x^2 + x - 1)$ the quotient is $(x^2 + 2)$ and remainder is 5. Justify the result you stated in question 5 above.

Use of algorithm of division to divide a polynomial function by another polynomial function.

7. Show that when $x^3 + 2x^2 + 3x - 2$ is divided by $(x^2 + x)$, the quotient is (x + 1) and the remainder is 2x - 2.

8. Show that when $x^4 + x^2 + x - 2$ is divided by $(x^2 - 1)$ the quotient is $(x^2 + 2)$ and the remainder is x.

9.Let $f(x) = x^3 + 4x^2 + x - 2$. f(x) is divided by $(x^2 + x - 2)$. Show that the quotient and remainder are (x+3) and 4 respectively.

10.Let $f(x) = x^3 + 2x^2 + 6x + 9$. f(x) is divided by $(x^2 + 4)$. Show that the quotient and remainder are (x + 2) and (2x + 1) respectively.

Remainder theorem

11.Let $f(x) = x^3 - ax^2 + 3x - b$. When f(x) is divided by (x-1) and (x+1) the remainders are 1 and -7 respectively. show that a = 2 and b = 1.

12. The polynomial f(x) is degree 3 with leading coefficient 1. when f(x) is divided by (x-2), (x-1) and (x+2), the corresponding remainders are 25, 8 and 17 respectively. Show that $f(x) = x^3 + 4x^2 - 2x + 5$.

13.Let $f(x) = x^3 + ax^2 + bx + c$. When f(x) is divided by $(x^2 + x)$ and (x - 1) the remainders are (x - 1) and 6 respectively. Find the values of a, b and c. [a = 3, b = 3 = -1].

ANANDA ILLANGAKOON

Factor theorem and its converse Use converse of factor theorem.

14.Let $f(x) = x^3 - 4x^2 + x + 6$.

Show that (x+1), (x-2) and (x-3) are factors of f(x).

15. Show that (2x-1), (x+2) and (x+1) are factors of $f(x) = 2x^3 + 5x^2 + x - 2$.

16.Let $f(x) = x^3 + 2x^2 - 5x - 6$. three linear factors of f(x).

Hence write down f(x) in factor form.

Use of factor theorem

17.Let $f(x) = x^3 + ax^2 + bx + c$. If (x+2), (x+3) and (x+1) are factors of f(x), then find the values of *a*, *b* and *c*. [a = 6, b = 11, c = 6].

18.Let $f(x) = ax^3 + bx^2 - cx + 1$. If (2x-1), (x+1) and (x-1) are factors of f(x), then find the values of *a*, *b* and *c* [a = 2, b = -1, c = 2]

Use of remainder theorem and factor theorem

19. f(x) is a polynomial function in x of degree 4. (x + 2) and (x - 3) are factors of f(x). When f(x) is divided by (x-1) and (x+1) the remainders are -12 and 8 respectively. Also f(x) - 6 is divided by x. Show that $f(x) = x^4 + x^3 - 9x^2 - 11x + 6$.

20. f(x) is a polynomial function of degree 3. (x+1) is a factor of f(x). When it is divided by (x+2), (x-1) and (x+3), the remainders are 1, 12 and -20 respectively. Show that $f(x) = 2x^3 + 5x^2 + 4x + 1$. Show also that when f(x) is divided by $(x^2 - 4)$, the quotient is (2x+5) and the remainder is 3(4x+7). Hence show that when f(x) is divided by $(x^2 - 3)$ the quotrent is (2x+5) and remainder is 2(5x+8).

ANANDA ILLANGAKOON